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Discrete probabilities and NGS

The advent of Next Generation Sequencing (NGS) technologies
revived the importance of discrete distributions of probabilities for
biologists.
This tutorial aims at providing a rapid overview of some discrete
distributions commonly used to analyse NGS data, and highlight the
relationship between them.
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Overview

Distribution Applications

Geometric Local read mapping without mismatch
(read extension until first mismatch)

Binomial Global read mapping with a given number
of mismatches

Negative
binomial

Local read mapping with m mismatches
(waiting time for (m + 1)th mismatch);
Detection of differentially expressed genes
from RNA-seq data

Poisson ChIP-seq peak calling
Hypergeometric Enrichment of a set of differentially

expressed genes for functional classes
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The Poisson distribution

The Poisson is a very simple and widely used discrete distribution.

P(X = x) = e−λλx

x !

I represents the probability to observe x successes when
expecting λ (say “lambda”).

I expected mean (for a sample of infinite size): µ = λ

I expected variance: σ2 = λ

I More info: read the help for the Poisson distribution:
help(Poisson)
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Exercise – Poisson distribution

I open collective result table
I login with the email on which you were invited
I each student has been assigned a λ comprized between 0.01

and 1000
I draw rep = 1000 random numbers following a Poisson with this
λ value

I compute the mean and variance
I fill up the corresponding columns in the collective report

https://docs.google.com/spreadsheets/d/1Kl_0ln0_dZycK17Nqyu44kw9R0dtVp5lflXRtN7pAhA/edit#gid=0
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Solution – mean and variance of a Poisson random
sampling

lambda <- 3
rep <- 1000
x <- rpois(n=rep, lambda=lambda)
mean(x)

[1] 3.03

var(x)

[1] 3.12
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Replicating an experiment

I read the help for runif() and replicate()
I make 1000 experiments consisting of the following steps:

I select at random a λ value between 0.5 and 1000
I draw n = 10 random numbers following a Poisson with this λ
I compute the mean and variance

I plot the relationship between mean and variance for the
Poisson distribution
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Solution – mean to variance relationship for the
Poisson distribution

# ?replicate
## Example of usage of the replicate function
sampling.means <- replicate(n = 10000, mean(rpois(n=10, lambda=3.5)))

hist(sampling.means, breaks=100)
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# This function returns the mean and variance of a
# random sample drawn from a Poisson distribution
#
# Parameters:
# n sample size (number of elements to draw)
# lambda expectation of the Poisson
rpois.mean.and.var <- function(n, lambda) {

x <- rpois(n, lambda)
return(data.frame(mean=mean(x), var=var(x), lambda=lambda, n=n))

}

rpois.mean.and.var(n=10, lambda=3.5)

mean var lambda n
1 2.9 1.66 3.5 10

## Generate a data frame with random Poisson sampling with increasing values of lambda
poisson.stats <- data.frame()
for (i in 1:1000) {

poisson.stats <- rbind(poisson.stats, rpois.mean.and.var(n=1000, lambda=i))
}

## Compute the coefficient of variation
poisson.stats$V <- poisson.stats$mean/poisson.stats$var

head(poisson.stats)

mean var lambda n V
1 1.02 1.09 1 1000 0.932
2 1.94 1.83 2 1000 1.058
3 2.96 2.89 3 1000 1.023
4 3.95 3.80 4 1000 1.039
5 4.89 4.55 5 1000 1.074
6 5.86 5.66 6 1000 1.036

print(summary(poisson.stats))

mean var lambda n
Min. : 1 Min. : 1 Min. : 1 Min. :1000
1st Qu.: 250 1st Qu.: 253 1st Qu.: 251 1st Qu.:1000
Median : 500 Median : 507 Median : 500 Median :1000
Mean : 500 Mean : 501 Mean : 500 Mean :1000
3rd Qu.: 750 3rd Qu.: 746 3rd Qu.: 750 3rd Qu.:1000
Max. :1000 Max. :1063 Max. :1000 Max. :1000

V
Min. :0.857
1st Qu.:0.970
Median :1.001
Mean :1.001
3rd Qu.:1.032
Max. :1.130

## Summmarize the results with various plots
par(mfrow=c(2,2))
par(mar=c(5,4,1,1))
plot(poisson.stats$mean, poisson.stats$var, col=densCols(poisson.stats$mean, poisson.stats$var), panel.first = grid())
abline(a=0, b=1, col="brown", lwd=2)
plot(poisson.stats$mean, poisson.stats$var, col=densCols(poisson.stats$mean, poisson.stats$var),

panel.first = grid(), log="xy")
abline(a=0, b=1, lwd=2)
plot(poisson.stats$mean, poisson.stats$V, col=densCols(poisson.stats$mean, poisson.stats$V),

panel.first = grid())
abline(h=1, col="brown", lwd=2)

# plot(poisson.stats$mean, poisson.stats$V, col=densCols(poisson.stats$mean, poisson.stats$V),
# panel.first = grid(), log="xy")
# abline(h=1, col="brown", lwd=2)

hist(poisson.stats$V, breaks=100)
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par(mar=c(5,4,4,2))
par(mfrow=c(1,1))
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Poisson mean vs variance
################################################################
# Quentin Ferre's solution with lapply
rep <- 10000
lambda <- runif(n=rep, min = 1, max=1000)
result <- lapply(lambda, rpois, n=10)

# Define a data frame with 2 columns indicating
# the mean and variance of the random Poisson samples.
rpois.stats <- data.frame(

mean=unlist(lapply(result, mean)),
var=unlist(lapply(result, var))*9/10

)

# Plot the relationship between mean and variance
plot(x=rpois.stats$mean,

y=rpois.stats$var, col="grey",
main="Random poisson sampling",
xlab="mean", ylab="variance")

grid()
abline(a=0, b=1, col="darkgreen", lwd=2)
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Poisson mean vs coefficient of variation

V = m/s2

# Compute the coefficient of variation
rpois.stats$V <- rpois.stats$mean / rpois.stats$var

# Check the mean of the coefficient of variation
mean(rpois.stats$V)

[1] 1.43

median(rpois.stats$V)

[1] 1.2

sum(rpois.stats$mean >= rpois.stats$var)/nrow(rpois.stats)

[1] 0.65

## PROBLEM HERE:
## THE VAR IS HIGHER THAN THE MEAN IN MORE CASES THAN EXPECTED
## THE MEAN VAR IS HIGHER THAN THE MEAN MEAN

# Plot the relationship between mean and coefficient of variation
plot(rpois.stats$mean, rpois.stats$V, col="grey",

main="Random poisson sampling",
xlab="mean", ylab="variance")

grid()
abline(h=1, col="darkgreen", lwd=2)
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Perfect match probability

We align a library of 50 million short reads of 25 base pairs onto a
genome that comprises 23 chromosomes totalling 3 Gigabases.
For the sake of simplicity, we assume that nucleotides are
equiprobable and independently distributed in the genome.
What is the probability to observe the following events by chance?

1. A perfect match for a given read at a given genomic position.
2. A perfect match for a given read anywhere in the genome

(searched on two strands).
3. A perfect match for any read of the library at any position of

the genome.
4. How many matches do we expect by chance if the whole library

is aligned onto the whole genome?
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Perfect match - parameters
Let us define the variables of our problem. Since we assume
equiprobable and independent nucleotides we can define p as
probability to observe a match by chance for a given nucleotide.

p = P(A) = P(C) = P(G) = P(T ) = 0.25

k <- 25 # Read length
L <- 50e6 # Library size
C <- 23 # Number of chromosomes
G <- 3e9 # Genome size
p <- 1/4 # Matching probability for a nucleotide

Exercise: use these parameters to compute the matching
probability for a read (solution is on next slide).



Discrete distributions for the analysis of Next Generation Sequencing (NGS) data
Perfect match probability

Perfect match for a given read at a given genomic
position

Since we assume independence, the joint probability (probability to
match all the nucleotides) is the product of the individual matching
probabilities for each nucleotide.

# Matching probabilty for a given read
# at a given genomic position
P.read <- p^k

Pread = P(n1 ∧ n2 ∧ . . . ∧ nk) = pk = 0.2525 = 8.9e − 16
This looks a rather small probability. However we need to take into
account that this risk will be challenged many times:

I the size of the genome (3 000 000 000)
I the size of the sequencing library (50 000 000)
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Number of genomic alignments
The read will be aligned to each genomic position, but we should
keep in mind the following facts.

1. For each chromosome, we will skip the last 24 positions, since
a 25 bp read cannot be fully aligned there.

2. We double the number of alignments since we try to map the
read on two strands.

N = 2
C∑

i=1
(Li − k + 1) = 2 (G − C(k − 1))

N <- 2 * (G - C * (k - 1))

In total, we will thus try to align each read on 5 999 998 896
genomic positions.
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Genome-wise matching probability for one read

We reason in 3 steps, by computing the following probabilities.

Formula Rationale

1− Pread = 1− pk no match at a given genomic position
(1− Pread)N not a single match in the genome
1− (1− Pread)N at least one match in the genome

P.genomic <- 1 - (1 - P.read)^N

This gives Pgenomic = 0.00000533.
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Library-wise probability
We can apply the same reasoning for the library-wise probability.

Formula Rationale

1− Pgenomic = (1− Pread)N no genomic match for a given read
(1− Pread)NL not a single genomic match in the

library
1− (1− Pread)NL at least one genomic match in the

library

P.library <- 1 - (1 - P.read)^(N*L)

This gives Plibrary = 1, which should however not be literally
interpreted as a certainty, but as a probability so close to 1 that it
cannot be distiguished from it.
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Expected number of matches

The expected number of matches is the read matching probability
mutliplie by the number of matching trials, i.e. G · L since each read
will be matched against each genomic position.

E (X ) = Pread · N · L

E <- P.read * N * L

In total, we expect 266 perfect matches by chance for the whole
library against the whole genome.
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Geometric distribution:
local alignment without mismatch
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Local alignment until the first mismatch
A local read-mapping algorithm starts by aligning the 5’ base of a
read, and extends the alignment until either the first mismatch or
the end of the read. In the example below, the alignment stops after
11 nucleotides.

ATGCG ACTAG CATAC GAGTG ACTAA
11111 11111 10

... ATGCG ACTAG CGTTC GACTG ACTAA ...

What is the probability to obtain by chance:

1. an alignment of exactly x = 11 nucleotides (11 matches
followed by 1 mismatch)?

2. an alignment of at least x = 11 nucleotides (11 matches
followed by anything)?
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Local alignment – parameters

p <- 0.25 # Matching probability for each nucleotide
x <- 11 # Number of matches before the first mismatch
P.x <- p^x * (1-p)
Pval.x <- p^x

P(X = 11) = px (1− p) = 0.25110.75 = 0.000000179

P(X ≥ 11) = px = 0.2511 = 0.000000238
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Geometric distribution
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Figure 1: Geometric distribution.
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Global alignment with mismatches
What is the probability to observe a global alignment with at most
m = 3 mismatches for a given read of 25bp aligned on a particular
genomic position?
This question can be formulated as a Bernoulli schema, where each
nucleotide is a trial, which can result in either a success (nucleotide
match between the read and the genome) or a failure (mismatch).
We can label each position of the alignment with a Boolean value
indicating whether it maches (1) or not (0), as examplified below.

ATGCG ACTAG CATAC GAGTG ACTAA
11111 11111 10101 11011 11111

... ATGCG ACTAG CGTTC GACTG ACTAA ...

At each position, we have a probability of success p = 0.25, and a
probability of failure q = 1− p = 0.75.
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Probability to observe exactly k matches

n <- 25 # Number of trials, i.e. the length of the alignment
m <- 3 # Maximal number of accepted mismatches
k <- n -m # Number of matches
p <- 1/4 # Matching probability for one nucleotide

Let us denote by k the number of matching residues. The
probability to observe k successes in a Bernoulli schema with n trials
and

P(X = k) = B(k; n, p) =
(

n
k

)
pk(1−p)n−k = n!

k!(n − k)!pk(1−p)n−k
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Properties of the binomial distribution

I Mean = n · p
I Variance = n · p · (1− p)
I Shape:

I i-shaped when p is close to 0,
I j-shaped when p is close to 1,
I bell-shaped for intermediate values of p.
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Binomial and perfect match

Remark: the perfect match probability seen above is a particular
case of the binomial.

P(X = n) = n!
n!0!pn(1− p)n−n = pn
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Probability of hit with at most m mismatches

We can sum the probabilities for all possible values of matches from
k = n −m (m mismatches) to k = n (no mismatch).

P(M ≤ m) =
n∑

k=n−m

(
n
k

)
pk(1− p)n−k
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Binomial density
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Figure 2: Binomial density function. Alignemnts with at most m
mismatches are highlighted in blue.
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Binomial P-value
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Figure 3: Binomial p-value. The ordinate indicates the probability to
obtain at least x matching nucleotides by chance.
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Simulated sequences

We can generate random sequences with equiprobable and
independent residues from the nucleotide alphabet.

A = {A,C ,G ,T}

GAGTCGATTGACGAGTAGGTTACGC
CGATGTGAAACCCCATTTGTATGGC
CTCTACATCGACGCGGCATGACCCG
ACCAGACATACTTCTCAGAGGCACC
CGCGCTTCCAATAACCAGACCTGAA
...
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Match count distribution in simulated sequences
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Figure 4: Global alignment simulation. A random read is aligned on
random sequences.
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Exercise – binomial Parameters

Each student will take a custom prior probability (p) among the
following values: {0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, 0.999}.

1. Draw 10000 random numbers from a binomial distribution
(rbinom()) with the custom p and 25 trials.

2. Compute the expected mean and variance.
3. Compute the classical descriptive statistics: mean, variance,

standard deviation.
4. Fill up the form on the collective result table
5. Plot an histogram of the numbers drawn.
6. Overlay the theoretical distribution and check the consistency.

https://docs.google.com/spreadsheets/d/1Kl_0ln0_dZycK17Nqyu44kw9R0dtVp5lflXRtN7pAhA/edit#gid=0
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Solution – binomial
rand.rep <- 10000 # Random sample size
p <- 0.1 # Prior probability
n <- 25 # Number of trials for the binomial
exp.mean <- n*p # Expected number of successes
exp.var <- n*p*(1-p)

# Generate random numbers
x <- rbinom(n = rand.rep, size = n, prob = p)

# Compute statistics
stats <- data.frame(p = p, n = n,exp.mean=exp.mean, mean=mean(x),

exp.var = exp.var, variance=var(x), sd=sd(x))
kable(stats, digits=4)

p n exp.mean mean exp.var variance sd

0.1 25 2.5 2.53 2.25 2.21 1.49
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Solution – binomial plot
hist(x, breaks=(0:26)-0.5, col="grey", main=paste("Binomial simulation, p =", p),

xlab="Successes", ylab="Frequency", las=1)
lines(0:25, rand.rep*dbinom(x = 0:25, size = n, prob = p), col="blue", lwd=3, type="h")

Binomial simulation, p = 0.1
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Negative binomial: local alignment with at
most m mismatches
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Local alignment with mismatches: problem
statement

A local alignment algorithm starts from the 5’ end of a read, and
stops either at the x th mismatch or when the end of the read is
reached. What is the probability to obtain by chance an alignemnt
of exactly 25 nucleotides with exactly m = 5 mismatches?
This amounts to obtain exactly k = 20 matches and m = 5
mismatches (in any order), followed by a mismatch at the
(k + m + 1)th position.
We show here some examples of local alignments with at most 5
mismatches. Note that the last residue can be either a match
(uppercase) or a mismatch (lowercase).

AAGACTGACGTCAACGATGGCCCCT

gAGtCgat
cgatgTGA
ctcta
AccAgacA
cgcgCTt
...
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Number of successes before the r th failure

The negative binomial distribution (also called Pascal
distribution) indicates the probability of the number of successes
(k) before the r th failure, in a Bernoulli schema with success
probability p.

NB(k|r , p) =
(

k + r − 1
k

)
pk(1− p)r

This formula is a simple adaptation of the binomial, with the
difference that we know that the last trial must be a failure. The
binomial coefficient is thus reduced to choose the k successes
among the n − 1 = k + r − 1 trials preceding the r th failure.
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Alternative formulation

It can also be adapted to indicate related probabilities.
I Number of failures (r) before the kth success.

NB(r |k, p) =
(

k + r − 1
r

)
pk(1− p)r

I Number of trials (n = k + r − 1) before the r th failure.

NB(n|r , p) =
(

n − 1
r − 1

)
pn−r (1− p)r
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Properties of the negative binomial
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Negative binomial density
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Figure 5: Negative binomial.
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Local alignment with simulated sequences

Local alignemnt, at most 5 mismatches
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Exercise – Negative binomial
Each student chooses a value for the maximal number of failures (r).

1. Read carefully the help of the negative binomial functions:
help(NegBinomial)

2. Random sampling: draw of rep = 100000 random numbers
from a negative binomial distribution (rndbinom()) to
compute the distribution of the number of successes (k) before
the r th failure.

3. Compute the expected mean and variance of the negative
binomial.

4. Compute the mean and variance from your sampling
distribution.

5. Draw an histogram with the number of successes before the r th

failure.
6. Fill up the form on the collective result table

https://docs.google.com/spreadsheets/d/1Kl_0ln0_dZycK17Nqyu44kw9R0dtVp5lflXRtN7pAhA/edit#gid=0
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Solution to the exercise – negative binomial
r <- 6 # Number of failures
p <- 0.75 # Failure probability
rep <- 100000
k <- rnbinom(n = rep, size = r, prob = p)
max.k <- max(k)
exp.mean <- r*(1-p)/p
rand.mean <- mean(k)
exp.var <- r*(1-p)/p^2
rand.var <- var(k)
hist(k, breaks = -0.5:(max.k+0.5), col="grey", xlab="Number of successes (k)",

las=1, ylab="", main="Random sampling from negative binomial")
abline(v=rand.mean, col="darkgreen", lwd=2)
abline(v=exp.mean, col="green", lty="dashed")
arrows(rand.mean, rep/20, rand.mean+sqrt(rand.var), rep/20,

angle=20, length = 0.1, col="purple", lwd=2)
text(x = rand.mean, y = rep/15, col="purple",

labels = paste("sd =", signif(digits=2, sqrt(rand.var))), pos=4)
legend("topright", legend=c(

paste("r =", r),
paste("mean =", signif(digits=4, rand.mean)),
paste("exp.mean =", signif(digits=4, exp.mean)),
paste("var =", signif(digits=4, rand.var)),
paste("exp.var =", signif(digits=4, exp.var))
))

Random sampling from negative binomial

Number of successes (k)
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sd = 1.6

r = 6
mean = 1.998
exp.mean = 2
var = 2.667
exp.var = 2.667

kable(data.frame(r=r,
exp.mean=exp.mean,
mean=rand.mean,
exp.var=exp.var,
var=rand.var), digits=4)

r exp.mean mean exp.var var

6 2 2 2.67 2.67
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Negative binomial for over-dispersed
counts
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To be treated in the afternoon !
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