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Genomics
● Genomics is the discipline which aims 

at studying genome (structure, 
function of DNA elements, variation, 
evolution) and genes (their functions, 
expression...). 

● Genomics is mostly based on 
large-scale analysis
○ Microarrays
○ Sequencing
○ Yeast-two-hybrids,...
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Genomics

“The science for the 21st century” 
Ewan Birney(EMBL-EBI)
at GoogleTech talk
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http://www.youtube.com/watch?v=9SzwiZMSBeQ


Genomics an interdisciplinary 
science
Analysing genomes requires 
teams/individuals with various skills
● Biology
● Informatics
● Bioinformatics
● Statistics
● Mathematics, Physics
● ...
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Introduction to transcriptome analysis 
using high- throughput sequencing 

technologies
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Transcriptome analysis

● Tentative definition
○ Transcriptome: the set of all RNA 

produced by a cell or population of cells at 
a given moment 
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Main objectives of transcriptome analysis

● Understand the molecular mechanisms underlying gene 
expression
○  Interplay between regulatory elements and expression

■ Create regulatory model
● E.g; to assess the impact of altered variant or 

epigenetic landscape on gene expression
● Classification of samples (e.g tumors)

○ Class discovery
○ Class prediction

Relies on a holistic view of the system
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Some players of the RNA world

● Messenger RNA (mRNA)
○ Protein coding
○ Polyadenylated
○ 1-5% of total RNA

● Ribosomal RNA (rRNA)
○ 4 types in eukaryotes (18s, 28s, 5.8s, 5s)
○ 80-90% of total RNA

● Transfert RNA
○ 15% of total RNA
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Some players of the RNA world

● miRNA
○ Regulatory RNA (mostly through binding of 

3’UTR target genes )
● SnRNA

○ Uridine-rich
○ Several are related to splicing mechanism
○ Some are found in the nucleolus (snoRNA)

■ Related to rRNA biogenesis
● eRNA

○ Enhancer RNA
● And many others…(e.g LncRNA) 
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Transcriptome: the old school

Cyanine 5 
(Cy5)

Cyanine 3 
(Cy3)

Scanning
(ex: Genepix)

Cy-3:
 - Excitation 550nm
 - Emission 570nm
Cy-5:
 - Excitation 649nm
 - Emission 670nm
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Transcriptome still the old school

● Principle:
○ In situ synthesis of 

oligonucleotides
○ Features

■ Cells: 24µm x 24µm
■ ~107 oligos per cell
■ ~ 4.105-1,5.106 

probes
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Some pioneering works
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Some pioneering works: “Molecular portrait 
of breast tumors”
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Some pioneering works: Cluster analysis 
to infer gene function
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Some pioneering works: tumor class 
prediction 
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○ Cross-hybridization
■ Probe design issues

○ Content limited
■ Can only show you what you're already 

looking for
○ Indirect record of expression level

■ Complementary probes
■ Relative abundance

Microarrays drawbacks
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Even more powerful technology:
RNA-Seq
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RNA-Seq global overview

Library 
construction Sequencing

Alignment

Assembly

Quantification 
(counting)

Differential 
expression 
analysis

Reference 
génome

No 
reference 
genome

RNA-Seq with reference genome (I)

De novo RNA-Seq (II)

● Objectives: sequencing of DNA fragments derived from  
transcripts

We will talk 
about (I)
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RNA-Seq: library construction simplified
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Illumina sequencing general 
principle

http://www.illumina.com/company/video-hub/HMyCqWhwB8E.html 20

http://www.youtube.com/watch?v=HMyCqWhwB8E


● Fragmentation methods

○ RNA: magnesium-catalyzed hydrolysis, enzymatic clivage (RNAse III)

○ cDNA: sonication, Dnase I treatment

● Targeted RNA populations

○ Poly(A) RNA-Seq:

■ Positive selection of mRNA . Poly(A) selection.

○ Total RNA-Seq :All transcript excluding ribosomal RNA (rRNA) 

■ ‘Ribo depletion’. Negative selection. (RiboMinusTM) 

■ Select also pre-messenger 

○ Small RNA-seq 

■ Size selection (e.g between 17nt and 35nt). E.g for miRNA profiling

RNA-Seq library construction: protocol 
variations

Ribo-depletion 
vs Poly-A 
selection
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RNA-Seq library construction: protocol 
variations

● Stranded vs unstranded RNA-seq

○ Unstranded

■ No information regarding the strand of the gene producing the 
fragment. Ambiguous reads should be discarded

○ Stranded

■ The strand of the gene producing the fragment can be inferred 
from alignment

■ No ambiguity. Better estimation of gene expression level.

■ Better reconstruction of transcript model.
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Unstranded
(1) - RNA fragments (3) - dsDNA 

(4) - amplification

(5) - Sequencing : bridge 
amplification (not shown) and 
sequencing of each fragment

(2) - Reverse transcription 
and RNA degradation

Each colony may produce two types 
of sequences corresponding to both 
ends of the fragment.

(6) - Results 

(4) - ligation of 
adapters

*
*

*
*
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Stranded
(1) - RNA fragments

(3) - second 
strand synthesis 
with dUTP  

(4) - amplification

(5) - Sequencing : bridge 
amplification (not shown) and 
sequencing of each fragment

(2) - Reverse transcription 
and RNA degradation

Each colony may produce only one 
type of sequences corresponding to 
the 5’ or 3’ end depending on the 
kit.

(6) - Results 

(4) - Ligation of adapters

X

X
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Example of stranded single-end RNA-Seq 
alignment

Forward (Red)
Reverse (Blue)

Cd3g (brin -) Cd3d (brin +)

25



Stranded RNA-Seq result

+ (Watson)

- (Crick)
   
  Transcript 
   models

Stranded 
RNA-Seq allows 
one to extract 
signal produced 
from both strands

N
br

e 
de

 re
ad

s
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Example of unstranded single-end RNA-Seq 
alignment

Forward (Red)
Reverse (Blue)
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>>>>>> Ea1 >>>>> >>>>>> Ea2 >>>>> >>>>>> Ea3 >>>>>

<<<<<<<<<<<< Eb1 <<<<<<<<<<<<<<

+ (Watson)

- (Crick)

Ambiguous reads Non ambiguous reads

UNSTRANDED

Non Ambiguousreads
Non ambiguous reads

STRANDED

Ambiguous 
reads should 
be discarded
From 
counting

Unstranded RNA-Seq library limitations
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Sequencing variation: single-end 
vs Paired

● Paired-end sequencing: sequence both ends of a fragment
○ Facilitate alignment
○ Facilitate gene fusion detection
○ Better to reconstruct transcript model from RNA-Seq
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● Paired-end vs Single-end
○ Better reconstruction of transcripts with Paired-end
○ Paired-end : more expensive

RNA-Seq library preparation: PE vs SE 

E1 E2 E3

SE

PE

PE should 
be preferred 
(but more 
expensive)

E1 and E2 are connected in 3 encountered fragments

E1 and E2 may be connected in the  encountered 
transcripts
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Take care to genome version

Rainbow colors 
on coverage 
tracks 
correspond to 
mismatches !!!

● ACTB (chr5) mm9 vs mm10 in IGV (integrated Genome Viewer)
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Bioinformatic processing of sequencing 
data

Raw data (read 
seq. In fastq 
format).

Trimming

Quality control

Alignment/Mapping Transcript 
discovery

Quantification

NormalizationStatistical analysis

Differential expression

Clustering

Class prediction

Principal component 
analysis

...

Biological 
interpretation
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The raw data are provided in fastq format

■

■

■

■

@QSEQ32.249996 HWUSI-EAS1691:3:1:17036:13000#0/1 PF=0 length=36
GGGGGTCATCATCATTTGATCTGGGAAAGGCTACTG
+
=.+5:<<<<>AA?0A>;A*A################
@QSEQ32.249997 HWUSI-EAS1691:3:1:17257:12994#0/1 PF=1 length=36
TGTACAACAACAACCTGAATGGCATACTGGTTGCTG
+
DDDD<BDBDB??BB*DD:D#################
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The Sanger quality score

● Sanger quality score (Phred quality score): Measure the quality 
of each base call

○ Based on p, the probality of  error (the probability that the 
corresponding base call is incorrect)

○ Qsanger= -10*log10(p)

○ p = 0.01 <=> Qsanger 20 

● Quality score are in ASCII  33 

● Note that SRA has adopted Sanger quality score although 
original  fastq files may use different quality score (see: 
http://en.wikipedia.org/wiki/FASTQ_format) 34



ASCII 33
● Storing PHRED scores as single characters gave a simple and space 

efficient encoding:

● Character ”!” means a quality of 0

● Range 0-40
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Quality control for high throughput sequence 
data

● First step of analysis 

○ Quality control

○ Ensure proper quality of selected reads.

■ The importance of this step depends on the aligner used 
in downstream analysis
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Quality control with FastQC program

Quality

Position in read

Nb Reads

Mean Phred Score

Position in read

Look also at over-represented sequences
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Alignement: splice-aware aligners 

● Reads that overlaps several exons may not be mapped properly by 
splice-unaware aligners (e.g bowtie)

E1 E2 E3

E1 E1 E1 AAAAAAA

Genome

Final transcript

Fragments
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Splice-aware aligners ?

● Reads that overlaps several exons may not be mapped properly by 
splice-unaware aligners (e.g bowtie)

We will obtained 
spliced reads 
(gapped 
alignments)

Genome

Fragments

E1 E2 E3
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RNA-Seq: aligned reads (Stranded paired-end 
sequencing on Total RNA)

■
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Example of splice aware aligners

● Tophat
○ Part of a complete pipeline (the tuxedo pipeline)
○ Make call to bowtie to perform initial, 

unspliced-alignments
● STAR

○ Developed in the context of ENCODE project
○ Very fast (>> compared to tophat)
○ Need ~30Go of memory for human/mouse genome

■ Based on a associative table (hash).
○ Usage is painful
○ Compatible with the tuxedo pipeline
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Behind tophat: Bowtie a very popular 
aligner (for unspliced alignments)
● Burrows Wheeler Transform-based algorithm

● Two phases: “seed and extend”.

● The Burrows-Wheeler Transform of a text T, BWT(T), can be constructed as follows. 

○ The character $ is appended to T, where $ is a character not in T that is 
lexicographically less than all characters in T. 

○ The Burrows-Wheeler Matrix of T, BWM(T), is obtained by computing the matrix 
whose rows comprise all cyclic rotations of T sorted lexicographically. 

1
2
3
4
5
6
7

acaacg$
caacg$a
aacg$ac
acg$aca
cg$acaa
g$acaac
$acaacg

acaacg$

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

T BWT (T)

gc$aaac

7
3
1
4
2
5
6 42



● Burrows-Wheeler Matrices have a property called the Last First 
(LF) Mapping. 

○ The ith occurrence of character c in the last column 
corresponds to the same text character as the ith occurrence 
of c in the first column

○ Example: searching ”AAC” in ACAACG

● Second phase is “extension”

Bowtie principle

7
3
1
4
2
5
6
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TopHat pipeline
● RNA-Seq reads are mapped against the whole reference genome (bowtie).

● TopHat allows Bowtie to report more than one alignment for a read 
(default=10), and suppresses all alignments for reads that have more than 
this number

● Reads that do not map are set aside (initially unmapped reads, or IUM 
reads)

● TopHat then assembles the mapped reads using the assembly module in 
Maq. An initial consensus of mapped regions is computed.

● The ends of exons in the pseudoconsensus will initially be covered by few 
reads (most reads covering the ends of exons will also span splice junctions)

○ Tophat add a small amount of flanking sequence of each island 
(default=45 bp).
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TopHat pipeline
● Weakly expressed genes should be poorly covered 

○ Exons may have gaps

● To map reads to splice junctions, TopHat first enumerates all 
canonical donor and acceptor sites within the island sequences 
(as well as their reverse complements)

● Next, tophat considers all pairings of these sites that could form 
canonical (GT–AG) introns between neighboring (but not necessarily 
adjacent) islands.

○ By default, TopHat examines potential introns longer than 70 bp and shorter than 20 
000 bp (more than 93% of mouse introns in the UCSC known gene set fall within this 
range)

● Sequences flanking potential donor/acceptor splice sites within 
neighboring regions are joined to form potential splice junctions.

● Read are mapped onto these junction library
45



Mapping read spanning exons
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Aligner output: SAM/BAM files

● SAM = ‘Sequence Alignment/MAP’

● BAM: binary/compressed version of SAM

● Store information related to alignments

○ Read ID

○ Alignment position

○ Mapping quality

○ CIGAR String

○ Bitwise FLAG

■ read paired, read mapped in proper pair, read unmapped, ...

○ ...
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Bitwise flag
●    read paired

●    read mapped in proper pair

●    read unmapped

●    mate unmapped

●    read reverse strand

●    mate reverse strand

●    first in pair

●    second in pair

●    not primary alignment

●    read fails platform/vendor quality checks

●    read is PCR or optical duplicate
48



● 00000000001 → 2^0  = 1 (read paired)

● 00000000010 → 2^1  = 2 (read mapped in proper pair)

● 00000000100 → 2^2  = 4 (read unmapped)

● 00000001000 → 2^3  = 8 (mate unmapped) …

● 00000010000 → 2^4  = 16 (read reverse strand)

● 00000001001 →  2^0+ 2^3 = 9 → (read paired, mate unmapped)

● 00000001101 → 2^0+2^2+2^3 =13 ...

● ...

Bitwise flag

http://picard.sourceforge.net/explain-flags.html 49

http://picard.sourceforge.net/explain-flags.html
http://picard.sourceforge.net/explain-flags.html


■

◆

◆

◆

◆

ATTCAGATGCAGTA
ATTCA--TGCAGTA
ATTCAGATGCAGTA
ATTCA--TGCAGTA

5M2D7M
50



Mappability issues
● Mappability: sequence uniqueness of the reference

● Mappability = 1/(#genomic position for a given word)

● Mappability of 1 for a unique k-mer

● Mappability < 1 for a non unique k-mer
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Uniread ? Multireads ?

● First aligners defined the notions of uni-reads and multireads
● An uniread is thought to map to a single position on the genome
● A multiread is thought to map to several position on the genome

○ Which position/gene produced the signal ?

I’m a 
uniread

Genome

I’m a 
multiread

G1 G2 G3 G4

52



Uniread ? Multireads ?

● Several aligners still use this notion
○ E.g tophat(2)
○ See -x -g arguments

● The notion has been superseded by the mapping quality score.
○ Mapping quality score indicates is computed from the probability that alignement is 

wrong
○ -log10(prob. alignment is wrong)

● It is particularly advised to take into account mapping quality (e.g by 
selecting high quality alignments from the BAM file)
○ Samtools view -q 30 file.bam
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Searching for novel transcript models
● RNA-Seq may be used to discover novel transcripts inside the 

dataset
● Several software:

○ Cufflinks, MATS, MISO…
● Cufflinks is the most popular

○ Performs much better with stranded RNA-Seq
○ Analyse read overlap to infer transcript structure

Genome

Fragments

E1 E2 E3 54



Searching for novel transcript model: 
cufflinks

Read pair

Gapped alignment
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● E.g ENCODE (Encyclopedia Of DNA Elements)
○ A catalog of express transcripts

Transcript discovery in the context of the 
ENCODE project
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Some key results of ENCODE analysis

● 15 cell lines studied
○ RNA-Seq, CAGE-Seq, RNA-PET
○ Long RNA-Seq (76) vs short (36)
○ Subnuclear compartments

■ chromatin, nucleoplasm and nucleoli

● Human genome coverage by transcripts
○ 62.1% covered by processed transcripts
○ 74.7 % covered by primary transcripts, 
○ Significant reduction of ”intergenic regions”
○ 10–12 expressed isoforms per gene per cell line
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The world of long non-coding RNA 
(LncRNA)

● Long: i.e cDNA of at least 200bp 

● A considerable fraction (29%) of lncRNAs are detected in only one of 
the cell lines tested (vs 7% of protein coding)

● 10% expressed in all cell lines  (vs 53% of protein-coding genes)

● More weakly expressed than coding genes

● The nucleus is the center of accumulation of ncRNAs
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● Some results regarding their implication in cancer
● May help recruitment of chromatine modifiers
● May also reveal the underlying activity of enhancers
● A large fraction are divergent transcripts

Some LncRNA are functional
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The Gencode database (hs/mm)
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Quantification
● Objective

○ Count the number of reads or fragments (PE) that fall in each gene

■ featureCounts, HTSeq-count,...

■ The output is a count matrix (or expression matrix)
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Quantification

● Quantification is most generally performed at the gene level

○ Some specialized software may provide you with transcript abundance 
estimations

■ Cufflinks (tuxedo pipeline)

■ Kallisto

● Known issues

○ Positive association between gene counts and length

■ May be problematic for gene-wise comparisons

■ Suggests higher expression among longer genes

○ Unstranded data may lead to ambiguous reads that should be discarded
62



Intersample normalization: library size

● Inter-sample normalization is a prerequesite for differential expression 
analysis

● This normalization is mostly applied because of some imbalance in 
read counts between
○ Here sample 1 has 2 times more reads (24 vs 12)
○ Gene g expression will be overestimated in sample 1 although is expression is 

unchanged 
○ A basic normalisation factor could be the library size (total number of reads)

Sample 1 Sample 2

Reads from gene g

#readsg,1 = 4  ;  #readsg,2 = 2

Library size 
normalization Scaling factor = 24/12
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Inter-sample normalization: limits of library 
size
● If a large number of genes are highly expressed in, one 

experimental condition, the expression of the remaining 
genes will artefactually appear as decreased.

○ Can force the differential expression analysis to be skewed 
towards one experimental condition. 

G5

Ratio (sample2/sample1)

50.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5 64



TMM Normalization 
(Robinson and Oshlack, 2010)

● Trimmed Mean of M values
● Outline

○ Compute the M values (log ratio). 

■ Take the trimmed mean of the 
M value as scaling factor.

■ Multiply read counts by scaling 
factor (they multiply to one)

■ If more than two columns
●  The library whose 3rd 

quartile is closest to the 
mean of 3rd quartile is 
used.

■ Very similar to RLE

G5
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Intra-sample normalization

● Here the objective is to compare the expression level of genes in the 
same sample
○ Counts ?

■ Problem with long transcripts
● Produce lots of fragments
● Will appear artefactually highly expressed compare to other…

● Proposed method

○ RPKM 

■ Read per kilobase per million mapped reads (SE)

○ FPKM 

■ Fragment per kilobase per million mapped reads (PE)
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RPKM/FPKM normalization

●  2kb transcript with 3000 alignments in a sample of 10 millions of 
mappable  reads

○ RPKM = 3000/(2 * 10) = 150
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Differential expression analysis

● Use statistical tests (e.g based on negative binomial model) 
to find differentially expressed genes 
○ Biological replicates prefered/needed (not technical 

replicates)
○ Tools:

■ EdgeR, DESeq2…
● The list of differentially expressed genes may be used for 

subsequent analysis.
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An example list. 
Pubmed query for all of 

them ?



What is the biological meaning of a gene 
lists ?

● Example: the list of gene upregulated in tumors compared to 
normal counterpart.

● Is there any hidden biological meaning ?
● Solution: compare this list to known lists. Eg:

○ Gene involved in cell cycle, apoptosis, T-cell activation
○ Gene involved in chimiotactism
○ Gene whose products are located in mitochondria
○ Gene involved in a given pathway
○ Predicted targets of miRNA, transcription factors…. 
○ Gene located in a given chromosome
○ Genes known to be associated with mutations in a given tumor type….
○ Genes known or predicted as being regulated by a given transcription factor

70



Is my list enriched in gene whose function is 
known ?

71

● N genes
● m genes  known to be associated to a 

term/function T.
● n genes not associated to the 

term/function T.
● k selected genes (upregulated in the 

tumor compared to normal counterpart)
● x genes associated to term/function T in k.
● What is probability to observe x 

associated with term/function T in k ? 
○ X follows a hypergeometric 

distribution
○ Hypergeometric test / Fisher exact 

test

Term !Term

List x k-x k

!List m-x n-(k-x) N-k

   m 
(white)

   n
(black)

 N

X
   k

m

N



Where are these lists coming from ?

● Pathways: KEGG pathways, Reactome, Biocarta, GenMapp... 

● Gene Ontology

○ Ontology: definition of types, properties and relationships between 
entities using a control vocabulary

○ The GO (http://geneontology.org/) defines concepts/classes used to describe 

gene/product function, and relationships between these concepts. It classifies 
functions along three aspects:

■ molecular function

● molecular activities of gene products

■ cellular component

● where gene products are active

■ biological process

● pathways and larger processes made up of the activities of multiple gene 
products.

72

http://geneontology.org/


Example GO term: T 
cell activation 
(GO:0042098)

73

● 225 genes in human are 
annotated with GO term 
GO/0042098:

○ E.g:

■ IL27, IRF1, CD28, CD1D, CD5, 

CD6, CD4, CD8, LCK, 
ZAP70...



The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) 
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The Database for Annotation, Visualization and 
Integrated Discovery (DAVID) 
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Ontologies for almost everything ! 

● https://www.bioontology.org/
● Bioportal at http://bioportal.bioontology.org/

76
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Network analysis through datamining

● Mine various databases in search for meaningful connections between 
gene/products
○ Interactome analysis

■ Known or predicted Protein-Protein Interactions 
■ Several databases : IntAct, BioGrid, mint

● Yeast-two-hybrid
● Litterature…

○ Co-expression analysis
■ E.g microarray data or RNA-Seq data

● http://coxpresdb.jp/
○ Text-mining

■ ??
○ Combined analysis

■ String
■ Reactome
■ GeneMania

77



78

GeneMania



Yet other applications of RNA-Seq

● Fusion transcript analysis
○ Are there any fusion transcript specific of my tumors ?

● Isoforms or exons-level differential analysis
● Allele-specific expression

○ Preferential expression of one of the two alleles in a diploid 
genome

○ The allele-specific expression of a gene is attributed to a 
distinct epigenetic status of its two parental alleles

● Short RNA-Seq (miRNA)
● Single cell analysis

○ C1 (Fluidigm)
○ 10X Genomics 
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Sequence read Archive (SRA)

● The SRA archives high-throughput sequencing 
data that are associated with:

● RNA-Seq, ChIP-Seq, and epigenomic data that are 
submitted to GEO 80



SRA growth 
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● https://github.com/common-workflow-language/common-workflow-lan
guage/wiki/Existing-Workflow-systems

● E.g make, snakemake, galaxy, taverna...

http://www.bioconductor.org/help/course-materials/2009/EMBLJune09/Talks/RNAseq-Paul.pdf

Tools to create reproducible workflows
82
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Galaxy server (https://usegalaxy.org/)
● Interface to a computing cluster

● Highly flexible

○ Large palette of bioinformatic programs

○ ‘Easy’ to add your own

● Fully reproducible workflows
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Snakemake
● A make-like solution
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Merci 
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