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Genomics

e (Genomics is the discipline which aims
at studying genome (structure,
function of DNA elements, variation,
evolution) and genes (their functions,
expression...).

e Genomics is mostly based on

large-scale analysis
o Microarrays

o Sequencing

o Yeast-two-hybrids,...



Genomics

“The science for the 21st century”
Ewan Birney(EMBL-EBI)
at GoogleTech talk



http://www.youtube.com/watch?v=9SzwiZMSBeQ

Genomics an interdisciplinary

science
Analysing genomes requires

teams/individuals with various skills

Biology

Informatics
Bioinformatics
Statistics
Mathematics, Physics



Introduction to transcriptome analysis
using high- throughput sequencing
technologies



Transcriptome analysis

e Tentative definition
o Transcriptome: the set of all RNA
produced by a cell or population of cells at
a given moment



Main objectives of transcriptome analysis

e Understand the molecular mechanisms underlying gene
expression
o Interplay between regulatory elements and expression
m Create regulatory model
e E.g; to assess the impact of altered variant or
epigenetic landscape on gene expression
e (lassification of samples (e.g tumors)
o Class discovery
o Class prediction

Relies on a holistic view of the system



Some players of the RNA world

e Messenger RNA (MRNA)
o Protein coding
o Polyadenylated
o 1-5% of total RNA
e Ribosomal RNA (rRNA)
o 4 types in eukaryotes (18s, 28s, 5.8s, 5s)
o 80-90% of total RNA
e Transfert RNA
o 15% of total RNA



Some players of the RNA world

e MIRNA
o Regulatory RNA (mostly through binding of
3'UTR target genes )
e SnNRNA
o Uridine-rich
o Several are related to splicing mechanism
o Some are found in the nucleolus (snoRNA)
m Related to rRNA biogenesis
e cRNA
o Enhancer RNA
e And many others...(e.g LncRNA)



Transcriptome: the old school
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Science. 1995 Oct 20;270(5235):467-70.

Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Schena M, Shalon D, Davis RW, Brown PO. 10




Transcriptome still the old school

e Principle:

o |n situ synthesis of
oligonucleotides

o Features
m Cells: 24pm x 24um
m ~107 oligos per cell
m ~4.10°-1,5.10°

probes

\ g
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Some pioneering works
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Distinct types of diffuse large B-cell ymphoma identified by gene expression profiling.
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos |S, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T,

Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W,

Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM.
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Some pioneering works: “Molecular portrait

of breast tumors”

Human breast tumours are diverse in their natural history and in _ Top

their responsiveness to treatmentsl. variation in transcriptional
programs accounts for much of the biological diversity of human cells
and tumours. In each cell, signal transduction and regulatory systems
transduce information from the cell's identity to its environmental
status, thereby controlling the level of expression of every gene in the
genome. Here we have characterized variation in gene expression
patterns in a set of 65 surgical specimens of human breast tumours
from 42 different individuals, using complementary DNA microarrays
representing 8,102 human genes. These patterns provided a
distinctive molecular portrait of each tumour. Twenty of the tumours
were sampled twice, before and after a 16-week course of
doxorubicin chemotherapy, and two tumours were paired with a
lymph node metastasis from the same patient. Gene expression
patterns in two tumour samples from the same individual were
almost always more similar to each other than either was to any other
sample. Sets of co-expressed genes were identified for which
variation in messenger RNA levels could be related to specific
features of physiological variation. The tumours could be classified
into subtypes distinguished by pervasive differences in their gene
expression patterns.

,—llmmgmmmm

Two large branches were apparent in the dendrogram, and within these large branches were smaller branches for which common
biological themes could be inferred. Branches are coloured accordingly: basal-like, orange; Erb-B2 +, pink; normal-breast-like, light
green; and luminal epithelial/ER+, dark blue. a, Experimental sample associated cluster dendrogram. Small black bars beneath the
dendrogram identify the 17 pairs that were matched by this hierarchical clustering; larger green bars identify the positions of the three
pairs that were not matched by the clustering. b, Scaled-down representation of the intrinsic cluster diagram (see Supplementary
Information Fig. 6). €, Luminal epithelial/ER gene cluster. d, Erb-B2 overexpression cluster. e, Basal epithelial cell associated cluster
containing keratins 5 and 17. f, A second basal epithelial-cell-enriched gene cluster.
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Some pioneering works: Cluster analysis
to infer gene function
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Cluster analysis and display of genome-wide expression patterns
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*Department of Genetics and TDepartment of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, 300 Pasteur Avenue,
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Some pioneering works: tumor class
prediction

Science. 1993 Oct 15,286(5439):531-7.

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Golub TR!, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES.

+ Author information

Abstract
Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class

discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression
monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically
discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these
classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of
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Microarrays drawbacks

Cross-hybridization
m Probe design issues
Content limited
m Can only show you what you're already
looking for
Indirect record of expression level
m Complementary probes
m Relative abundance
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Even more powerful technology:
RNA-Seq

Nature Methods - 5, 585 - 587 {2008)
doi:10.1038/nmeth0708-585

The beginning of the end for microarrays?

Jay Shendure

Jay Shendure is in the Department of Genome Sciences, University of Washington, Seattle,
Washington 98195, USA. shendure@u. washington.edu

T i . Published online 15 October 2008 | Nature 455, 847 (2008) |
Wo compliemencary appr e
successfully tackled the s doi:10.1038/4558473a

once revealing unprecede]| FNPRWE

The death of microarrays?

High-throughput gene sequencing seems to be stealing a march
on microarrays. Heidi Ledford looks at a genome technology
facing intense competition.

Heidi Ledford
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RNA-Seq global overview

e Objectives: sequencing of DNA fragments derived from
transcripts

RNA-Seq with reference genome (l)

We will talk
about ()
Alignment
Reference
géenome
Library : Quantification leferenfual
: Sequencing ; ) expression
construction | (counting) :
analysis
No
reference Assembly
genome

De novo RNA-Seq (ll)
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RNA-Seq: library construction simplified
@) Select a range of sizes l PCR amplification?
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lllumina sequencing general
principle

llumina SBS

lechnology

A

1+

http://www.illumina.com/company/video-hub/HMyCgWhwBS8E.html
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http://www.youtube.com/watch?v=HMyCqWhwB8E

RNA-Seq library construction: protocol

variations
e Fragmentation methods

o RNA: magnesium-catalyzed hydrolysis, enzymatic clivage (RNAse lll)

o cDNA: sonication, Dnase | treatment

: Ribo-depletion
e Targeted RNA populations e Poly A
o Poly(A) RNA-Seq: selection

m Positive selection of mMRNA . Poly(A) selection.

o Total RNA-Seq :All transcript excluding ribosomal RNA (rRNA)
m ‘Ribo depletion’. Negative selection. (RiboMinus™)
m Select also pre-messenger

o Small RNA-seq

m Size selection (e.g between 17nt and 35nt). E.g for miRNA profiling

21



* RNA-Seq library construction: protocol

variations

e Stranded vs unstranded RNA-seq
o Unstranded

m No information regarding the strand of the gene producing the
fragment. Ambiguous reads should be discarded

o Stranded

m The strand of the gene producing the fragment can be inferred
from alignment

m  No ambiguity. Better estimation of gene expression level.

m Better reconstruction of transcript model.
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(1) - RNA fragments

(6) - Results

Each colony may produce two types
of sequences corresponding to both
ends of the fragment.

Unstranded

(2) - Reverse transcription (3) - dsDNA

and RNA degradation

(5) - Sequencing : bridge
amplification (not shown) and
sequencing of each fragment

Al Al

g v wl
A!*$|A|*!
y T |
vl Iv

(4) - ligation of

adapters

(4) - amplification
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(1) - RNA fragments

(6) - Results

Each colony may produce only one

type of sequences corresponding to

the 5’ or 3’ end depending on the
kit.

Stranded

(3) - second
(2) - Reverse transcription strand synthesis
and RNA degradation with dUTP

(5) - Sequencing : bridge
amplification (not shown) and
sequencing of each fragment

Al Al
‘4 I ‘4 I
I O AV [

(4) - Ligation of adapters

-
< _____

-

g - ==

>

<_ ..........

(4) - amplification

-
4'_...ﬁ>(..

>




Example of stranded single-end RNA-Seq
alignment

Forward (Red)
Reverse (Blue)

Cd3g (brin -) Cd3d (brin +)

= L | L B ——
Cd3d
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+ (Watson)
- (Crick)

Transcript
models

Stranded RNA-Seq result

Ubeda

Cdlg

Cd3d

Cdle

Stranded
RNA-Seq allows
one to extract
signal produced
from both strands

Nbre de reads
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Example of unstranded single-end RNA-Seq
alignment

Forward (Red)
Reverse (Blue)
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Unstranded RNA-Seq library limitations

+ (Watson)
>S>>>>> Egql >>>>> ——— >>>>>> Eg2 >>>>> ——— >>>>>> Eg3 >>>>>
- (Crick)
<<<<<<<<<<<< EhT <<<<<<<<c<<<<<<
e — Ambiguous
- S - reads should
UNSTRANDED I —_— _— be discarded
From
Ambiguous reads Non ambiguous reads counting

STRANDED

Non ambiguous reads
Non Ambiguousreads



Sequencing variation: single-end
vs Paired

e Paired-end sequencing: sequence both ends of a fragment
o Facilitate alignment
o Facilitate gene fusion detection
o Better to reconstruct transcript model from RNA-Seq

Figure 4. Paired-End Sequencing and Alignment

Paired-End Reads Alianment to the Reference Se jJuence

ﬂ

—_— e
—]
—_—

) enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is
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RNA-Seq library preparation: PE vs SE

e Paired-end vs Single-end
o Better reconstruction of transcripts with Paired-end
o Paired-end : more expensive

E1 E2 E3

— o E1 and E2 may be connected in the encountered
............ — transcripts

SE e e e e

e —_— e —_— E1 and E2 are connected in 3 encountered fragments
PE should
be preferred
(but more

expensive)



Take care to genome version

e ACTB (chr5) mm9 vs mm10 in IGV (integrated Genome Viewer)
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Bioinformatic processing of sequencing
data

[Quality control ]
/\ Alignment/Mapping Hzrsa::\(lzxt ]

Raw data (read
sed. In fastq Trimming
format).

Quantification

- - Differential expression
Biological
interpretation

Clustering l
Class prediction Statistical analysis HNormallzatlon ]

Principal component
analysis




The raw data are provided in fastg format

s Header
s Sequence
s + (optional header)

s Quality (Sanger quality score or other format)

@QSEQ32.249996 HWUSI-EAS1691:3:1:17036:13000#0/1 PF=0 length=36
GGGGGTCATCATCATTTGATCTGGGAAAGGCTACTG

+

= .+ 5 <<K<K<>ARARO0RA>; A*AHHHHHHHHFHHHFHEH

@QSEQ32.249997 HWUSI-EAS1691:3:1:17257:12994#0/1 PF=1 length=36
TGTACAACAACAACCTGAATGGCATACTGGTTGCTG

+

DDDD<BDBDB? ?BB*DD: D ## ### ## ##### ###+#

33



The Sanger quality score

e Sanger quality score (Phred quality score): Measure the quality
of each base call

o Based on p, the probality of error (the probability that the
corresponding base call is incorrect)

o Qsanger=-10%*log10(p)
o p =0.01 <=>Qsanger 20
e Quality score are in ASCIl 33

e Note that SRA has adopted Sanger quality score although
original fastq files may use different quality score (see:
http://en.wikipedia.org/wiki/FASTQ_format)
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ASCII 33

e Storing PHRED scores as single characters gave a simple and space
efficient encoding:

e Character ”!” means a quality of O

Dec Hex Char Dec Hex  Char Dec Hex Char Dec Hex Char
o oo kul 3z 20 Space 61 40 @ 96 50
. Range 0-40 1 01 Start of heading 33 21 ! 55 41 A a7 561 =a
z 0z  Start of text cE ot 65 42 B 95 562 b
3 03 End of text 35 B 6 T TS 99 63 o
4 04 End of transmit 36 (24 & B S gl 100 54 d
5 05 Enguiry 377 =k oo iy 101 55 e
6 06 Acknowledge 35 26 & YO0 456 F 10z 6o £
707 Audible bell 39 . ' 71 B 103 67 o
g 05 Backspace 40 =8 I 7a 45 H 104 565 h
9 09 Horizontal tak 41 73 gl T 105 FEE i
10 0OA Line feed 4z S Y4 4A 0 J 106 [=F-
11 OB ‘“erticaltab 43 2B + 'S 4B K ia7 5B k
1z 0OZ  Form feed EE 000 Ye  4C L 105 6C 1
13 Ol Carriage return 35 ERTU. — i 4D M 102 el m
14 OE  Shift out 45 | ZE 7 v 4E I 110 EE n
15 0OF Shiftin 47 R 79 4F O 111 6F o
16 10  Data link escape 45 30 0O &0 S50 P 11z YO
17 11 Device contral 1 49 31 1 g1 51 @Q 113 71 g
15 12  Device control 2 50 [ 8z was R 114 72 r
19 13 Device control 3 51 &3 SR 115 R =
20 14 Device control 4 5z SR 1 414 54 T 115 S 1
21 15 HMeg. acknowledge 53 S R 85 55 1O 117 75 u
22 16  Synchronous idle 54 36 & 86 56 WV i11a8 76w
23 17 Endtrans. block 55 87 57 W 119 77 w
24 18 Cancel 56 |38 8 o] 58 X 120 78 =
25 19  End of medium 57 Fo 59 W 121 BEEEIR
26 14  Substitution 55 JA o0 ESA  Z 122 7A =
27 1E Ezcape 50 Fl1 SE [ 123 7B |
25 1C  File separator 50 [ 30 < oz G 12 |
29 1D Group separator &1 AT = a3 ED ] 1z5 7D + 35
30 1E FRecord separstor 62 = - o4 S 126 I
31 1F Unit separator 53 SR D a5 E&F 1z7 FF 0O




Quality control for high throughput sequence

data

@ FastQC =]

File Help

bad_sequence. txt good_seguence_short. txt|

lllllllllllllllllllllllll
errepresented sequences || ]
- . @ Kmer Content ¢
e First step of analysis s
4
2 TIT
1 3 1 7 9 11 13 15 17 19 2 27 2

o Quality control
o Ensure proper quality of selected reads.

m The importance of this step depends on the aligner used
In downstream analysis
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Quality control with FastQC program

“\HWJ NI

Quality - I .

12 1 W 15 1 17 18 13 20 2l 22 23 @4 2 25 27 28 25 0 31 322 3 34 3 26 7 3 3@ 40 Al
P .t. - d

Position in read

LLLLLL Look also at over-represented sequences

Mean Phred Score 37



Alighement: splice-aware aligners

® Reads that overlaps several exons may not be mapped properly by
splice-unaware aligners (e.g bowtie)

Genome

E1 — E2 — E3

Final transcript E1 E1 E1 AAAAAAA

Fragments



Splice-aware aligners ?

® Reads that overlaps several exons may not be mapped properly by
splice-unaware aligners (e.g bowtie)

Fragments

Genome

E1 — E2 — E3

We will obtained
spliced reads

(9apped
alignments)



RNA-Seq: alighed reads (Stranded paired-end
sequencing on Total RNA)

A e SR R IV WU U WS, .

li— N
i - I s Gene: IL2RA
——fi : i
T T e Ik
i W e 40
—l i if

-------- -




Example of splice aware aligners

e Tophat

O

O

Part of a complete pipeline (the tuxedo pipeline)
Make call to bowtie to perform initial,
unspliced-alignments

o STAR

O

O

O

Developed in the context of ENCODE project

Very fast (>> compared to tophat)

Need ~30Go of memory for human/mouse genome
m Based on a associative table (hash).

Usage is painful

Compatible with the tuxedo pipeline

41



Behind tophat: Bowtie a very popular

aligner (for unspliced alignments)

Burrows Wheeler Transform-based algorithm

Two phases: “seed and extend”.

<

The Burrows-Wheeler Transform of a text T, BWT(T), can be constructed as follows.

O

©)

The character $ is appended to T, where $ is a character not in T that is
lexicographically less than all characters in T.

The Burrows-Wheeler Matrix of T, BWM(T), is obtained by computing the matrix

whose rows comprise all cyclic rotations of T sorted lexicographically.

T

acaacg$ —

acaacg$
caacg$a
aacg$ac
acg$aca
cg$acaa
gSacaac
Sacaacg

Soordkd WK

Sacaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
gS$acaac

OO NN AR WJ

BWT (T)

— gc$aaac
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Bowtie principle

Burrows-Wheeler Matrices have a property called the Last First
(LF) Mapping.

o The ith occurrence of character c in the last column
corresponds to the same text character as the ith occurrence
of ¢ in the first column

aac aac aac

(a) $acaacg () ¢ g $ g =9 g 7
aacg$ac 2 c a ¢ ~aacgiaic 3
acaacgs a $ > acaacgs ™ s 1

acaacg$—+acgSaca—+>gcSaaac a a _ac a a A 4
caacg$a —— Niar a ¢ a 2
cgSacaa c a ¢ a ¢ a >
gSacaac *n c a c a e ©



TopHat pipeline
RNA-Seq reads are mapped against the whole reference genome (bowtie).

TopHat allows Bowtie to report more than one alignment for a read
(default=10), and suppresses all alignments for reads that have more than

this number

Reads that do not map are set aside (initially unmapped reads, or IUM
reads)

TopHat then assembles the mapped reads using the assembly module in
Mag. An initial consensus of mapped regions is computed.

The ends of exons in the pseudoconsensus will initially be covered by few
reads (most reads covering the ends of exons will also span splice junctions)

o Tophat add a small amount of flanking sequence of each island
(defau |t=45 bp) ' Bioinformatics. 2009 May 1;25(9):1105-11. Epub 2009 Mar 16.

TopHat: discovering splice junctions with RNA-Seq.
Trapnell C, Pachter L, Salzberg SL.
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TopHat pipeline
Weakly expressed genes should be poorly covered

o Exons may have gaps

To map reads to splice junctions, TopHat first enumerates all
canonical donor and acceptor sites within the island sequences
(as well as their reverse complements)

Next, tophat considers all pairings of these sites that could form
canonical (GT-AG) introns between neighboring (but not necessarily
adjacent) islands.

o By default, TopHat examines potential introns longer than 70 bp and shorter than 20

000 bp (more than 93% of mouse introns in the UCSC known gene set fall within this
range)

Sequences flanking potential donor/acceptor splice sites within
neighboring regions are joined to form potential splice junctions.

Read are mapped onto these junction library
5 (GONN  GU [ TAllpypypy]  ACHIEGONEN 3 45




Mapping read spanning exons

o !n.....a.n..n_.n.._..__m%,_...__,__ = SR PR w..,_,._.i.,w..._!*.\..n_._!-..... .-_...-!___.Il_,]l._u-!.._h,, ”,_H,_,__.,M.L.....
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Aligner output: SAM/BAM files

e SAM = ‘Sequence Alignment/MAP’
e BAM: binary/compressed version of SAM

e Store information related to alignments
o ReadID
o Alignment position
o Mapping quality
o CIGAR String
o Bitwise FLAG

m read paired, read mapped in proper pair, read unmapped, ...

Sequence Alignment/Map Format Specification
47
The SAM/BAM Format Specification Working Group



Bitwise flag

read paired

read mapped in proper pair

read unmapped

mate unmapped

read reverse strand

mate reverse strand

first in pair

second in pair

not primary alignment

read fails platform/vendor quality checks

read is PCR or optical duplicate
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Bitwise flag

00000000001 — 220 =1 (read paired)

00000000010 — 27 = 2 (read mapped in proper pair)
00000000100 — 222 =4 (read unmapped)

00000001000 — 223 = 8 (mate unmapped) ...

00000010000 — 2*4 = 16 (read reverse strand)

00000001001 — 270+ 273 = 9 — (read paired, mate unmapped)
00000001101 — 270+2/2+2/3 =13 ...

http://picard.sourceforge.net/explain-flags.html
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The extended CIGAR string

m Exemple flags:

€ M alignment match (can be a sequence match or
mismatch !)

| insertion to the reference

D deletion from the reference

¢ 6O

http://samtools.sourceforge.net/SAM1.pdf

ATTCAGATGCAGTA
ATTCA--TGCAGTA

SM2D7M
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Mappability issues
e Mappability: sequence uniqueness of the reference
e Mappability = 1/(#genomic position for a given word
e Mappability of 1 for a unique k-mer

e Mappability < 1 for a non unique k-mer

g’
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Uniread ? Multireads ?

e First aligners defined the notions of uni-reads and multireads
e An uniread is thought to map to a single position on the genome

e A multiread is thought to map to several position on the genome
o  Which position/gene produced the signal ?

Genome * \

I'm a I'm a
uniread multiread
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Uniread ? Multireads ?

e Several aligners still use this notion
o E.gtophat(2)
o See -X -g arguments
e The notion has been superseded by the mapping quality score.

o Mapping quality score indicates is computed from the probability that alignement is

wrong
o -log10(prob. alignment is wrong)

e |Itis particularly advised to take into account mapping quality (e.g by
selecting high quality alignments from the BAM file)

o Samtools view -q 30 file.bam
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Searching for novel transcript models

e RNA-Seq may be used to discover novel transcripts inside the
dataset
e Several software:
o Cufflinks, MATS, MISO...
e Cufflinks is the most popular
o Performs much better with stranded RNA-Seq
o Analyse read overlap to infer transcript structure

Fragments

Genome

E1 — E2 — E3

o4



Searching for novel transcript model:
cufflinks

Assembly
b Mutually d Abundance estimation
incompatible
fragments L. wan :
E s | = ===___-L
=28 o030 = =
"$es8TTLLoc"as l ]”h
— =] ——
' Fragment
Transcript coverage length
and compatibility distribution
Read pair

Gapped alignment

Minimum path cover




Transcript discovery in the context of the
ENCODE project

e E.g ENCODE (Encyclopedia Of DNA Elements)

o A catalog of express transcripts

H
Hypersensitive GHyC0R

Sltns o Jllr\:. ""\( ”\"!"A

II;I

,.f) ; /
A i Z l.h b %
] i 50
Ly
c DNase-seq ChiP Computational ik
2 FAIRE-seq €4 predictions and seq
RT-PCR
ok, ol 4 ¥ Geng -
— | ] - I .
Long-range regulatory elements cis-regulatory elements /\ # -—u._,f"dn“‘“—
(enhancers, repressors/ silencers, insulators) {promoters, transcription ;" ,
rdnbcnp

factor binding sites)



Some key results of ENCODE analysis

e 15 cell lines studied
o RNA-Seq, CAGE-Seq, RNA-PET
o Long RNA-Seq (76) vs short (36)
o Subnuclear compartments
m chromatin, nucleoplasm and nucleol

e Human genome coverage by transcripts
o 62.1% covered by processed transcripts
o 74.7 % covered by primary transcripts,
o Significant reduction of "intergenic regions”
o 10-12 expressed isoforms per gene per cell line
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The world of long non-coding RNA
(LncRNA)

Long: i.e cDNA of at least 200bp

A considerable fraction (29%) of IncRNAs are detected in only one of
the cell lines tested (vs 7% of protein coding)

10% expressed in all cell lines (vs 53% of protein-coding genes)
More weakly expressed than coding genes

The nucleus is the center of accumulation of ncRNAs
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Some LncRNA are functional

Some results regarding their implication in cancer
May help recruitment of chromatine modifiers

May also reveal the underlying activity of enhancers
A large fraction are divergent transcripts

B
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The Gencode database (hs/mm)

DATA DATA
STATISTICS STATISTICS
BROWSER BROWSER

HUMAN MOUSE

GENCODE 25 (20.07.16) M) GENCODE M10(20.07.16)

Version 25 (March 2016 freeze, GRCh38) - Ensembl 85

General stats

Total No of Genes 58037 Total No of Transcripts
Protein-coding genes 19950 Protein-coding transcripts
Long non-coding RNA genes 15767 - full length protein-coding:
Small non-coding RNA genes 7258 - partial length protein-coding:
Pseudogenes 14650 Nonsense mediated decay transcripts
- processed pseudogenes: 10725 Long non-coding RNA loci transcripts
- unprocessed pseudogenes: 3400
- unitary pseudogenes: 214
- polymorphic pseudogenes: 51
- pseudogenes: 21 Total No of distinct translations
Immunoglobulin/T-cell receptor gene segments Genes that have more than one distinct translations
- protein coding segments: 411
- pseudogenes: 239

198093
80087
54755
25332
13769
27692

60033
13536
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Quantification

e Objective

o Count the number of reads or fragments (PE) that fall in each gene

m featureCounts, HTSeg-count,...

m The outputis a count matrix (or expression matrix)
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Quantification

e Quantification is most generally performed at the gene level

o Some specialized software may provide you with transcript abundance
estimations

m Cufflinks (tuxedo pipeline)

m Kallisto

e Known issues 3¢|

o Positive association between gene counts and length

m May be problematic for gene-wise comparisons
m Suggests higher expression among longer genes

o Unstranded data may lead to ambiguous reads that should be discarded
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Intersample normalization: library size

e Inter-sample normalization is a prerequesite for differential expression

analysis
e This normalization is mostly applied because of some imbalance in

read counts between
o Here sample 1 has 2 times more reads (24 vs 12)

o Gene g expression will be overestimated in sample 1 although is expression is

unchanged
o A basic normalisation factor could be the library size (total number of reads)

— Reads from gene g

Sample 1 Sample 2

- — S — Library size

normalization SCaIing factor = 24/12

#reacg =4 : #reads ,=2
g,1 9,2
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Inter-sample normalization: limits of library
size

o If a large number of genes are highly expressed in, one
experimental condition, the expression of the remaining
genes will artefactually appear as decreased.

o Can force the differential expression analysis to be skewed

towards one experimental condition.
Ratio (sample2/sample1)
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0

TMM Normalization
(Robinson and Oshlack, 2010)

G5

Sample 1

Sample 2

e Trimmed Mean of M values
e Outline

o Compute the M values (log ratio).

= Take the trimmed mean of the
M value as scaling factor.

= Multiply read counts by scaling
factor (they multiply to one)

s If more than two columns

e The library whose 3rd
quartile is closest to the
mean of 3rd quartile is
used.

= Very similar to RLE

nome Biol. 2010;11(3):R25. Epub 2010 Mar 2

A scaling normalization method for differential expression analysis of RNA-seq dat§5
Robinson MD, Oshlack A.




Intra-sample normalization

e Here the objective is to compare the expression level of genes in the

same sample

o Counts ?
m Problem with long transcripts
e Produce lots of fragments
e Will appear artefactually highly expressed compare to other...

e Proposed method
o RPKM
m Read per kilobase per million mapped reads (SE)
o FPKM

m Fragment per kilobase per million mapped reads (PE)
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RPKM/FPKM normalization

e 2kb transcript with 3000 alignments in a sample of 10 millions of
mappable reads

> RPKM = 3000/(2 * 10) = 150

Accurate quantification of transcriptome =
- - from RNA-Seq data by effective length
Computational methods for transcriptome normalizaﬁm? o st
annotation and quantification using RNA-seq 67
Manuel Garber!, Manfred G Grabherr!, Mitchell Guttman'-2 & Cole Trapnell'-? Soohyun Lee', Chae Hwa Seo!, Byungho Lim?, Jin Ok Yang', Jeongsu Oh', Minjin Kim?,

Sooncheol Leez, Byungwook Lee], Changwon Kang2 and Sanghyuk Lee's3"



Differential expression analysis

e Use statistical tests (e.g based on negative binomial model)
to find differentially expressed genes
o Biological replicates prefered/needed (not technical
replicates)
o Tools:
m EdgeR, DESeq2...
e The list of differentially expressed genes may be used for
subsequent analysis.
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What is the biological meaning of a gene
lists ?

e Example: the list of gene upregulated in tumors compared to
normal counterpart.
e Is there any hidden biological meaning ?

e Solution: compare this list to known lists. Eg:

Gene involved in cell cycle, apoptosis, T-cell activation

Gene involved in chimiotactism

Gene whose products are located in mitochondria

Gene involved in a given pathway

Predicted targets of miRNA, transcription factors....

Gene located in a given chromosome

Genes known to be associated with mutations in a given tumor type....
Genes known or predicted as being regulated by a given transcription factor

O O O O O O O O
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Is my list enriched in gene whose function is
known ?

e N genes Term  ITerm
e m genes known to be associated to a List o k-x K

term/function T.
e n genes not associated to the
term/function T.
e Kk selected genes (upregulated in the m o
tumor compared to normal counterpart) (white)  (black)
e X genes associated to term/function T in k.
e \What is probability to observe x
associated with term/function T in k ?
o X follows a hypergeometric
distribution
o Hypergeometric test / Fisher exact K
test X

IList m-X n-(k-x) N-k

N




Where are these lists coming from ?

e Pathways: KEGG pathways, Reactome, Biocarta, GenMapp...

e Gene Ontology

o Ontology: definition of types, properties and relationships between
entities using a control vocabulary

O The GO (http://geneontology.org/) defines concepts/classes used to describe

gene/product function, and relationships between these concepts. It classifies
functions along three aspects:

m molecular function

e molecular activities of gene products
m cellular component

e where gene products are active

m biological process
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http://geneontology.org/

biological

Example GO term: T
L |. cell activation

cellular single-organis
adhesion process m process

\ (GO:0042098)

immune cell
S:{;‘Ei:’s proliferation

) single-organis
cell adhesion m cellular

process
—— single k_ | - e 225 genes in human are
adhesion Org?lﬂ'essr?o;e” cell activation prolfferation annotated Wlth GO term

R— GO/0042098:

organismal leukocyte
cell-cell activation
adhesion

A o E.qg:
leukocyte mononuclear

cell-cell cell
adhesion proliferation

LN o~~~ m |IL27,IRF1, CD28, CD1D, CD5,

leukocyte

s CD6, CD4, CDS8, LCK,
L ZAP70...

lymphocyte
activation

lymphocyte
aggregation
F"‘v"‘ v
T cell lymphocyte
aggregation proliferation
- —

IT cell activation

T cell
proliferation




The Database for Annotation, Visualization and Integrated
Discovery (DAVID)

Current Gene List: demolist2
Current Background: Homo sapiens
379 DAVID IDs

Options

 Rerun Using Options  Create Sublist

468 chart records Ei Download File

2.8E-

GOTERM_CC_FAT plasma membrane part RT 21.9 7 9.3E-5

= GOTERM_BP_FAT response to wounding RT mmm 34 9.0 g'ZE_ 2.2E-3
" ; —_— 7.3E-

| GOTERM_BP_FAT regulation of apoptosis RT s 42 11.1 6 8.9E-3

s} GOTERM_BP_FAT response to organic substance RT s 39 10.3 z'sE- 6.2E-3

=] GOTERM_ BP FAT regulation of programmed cell death RT s 42 11.1 g'ZE_ 5.6E-3
? —_ 9.9E-

= GOTERM_BP_FAT regulation of cell death RT s 42 11.1 p 4,8E-3
. . . R 1.0E-

o GOTERM_BP_FAT regulation of cell proliferation RT s 41 10.8 5 4,1E-3
_— - B 1.1E-

=] GOTERM_MF_FAT transcription factor activity RT 45 11.9 5 6.3E-3

. GOTERM_BP_FAT Inflammatory response RT il 23 61 °F 6.4E3

& GOTERM_MF_FAT sequence-specific DNA binding RT mmm 32 8.4 E'SE- 7.3E-3
; _— 4.1E-

@ GOTERM_CC_FAT cell fraction RT s 45 11.9 6.7E-3

5

Database

DAVID Knowledgebase: a gene-centered database integrating
heterogeneous gene annotation resources to facilitate
high-throughput gene functional analysis

Brad T Sherman'!, Da Wei Huangt!, Qina Tan!, Yongjian Guo?,
Stephan Bour?, David Liu3, Robert Stephens3, Michael W Baseler>, H
Clifford Lane? and Richard A Lempicki*!



CELLCYCLE
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The Database for Annotation, Visualization and

Integrated Discovery (DAVID)
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Ontologies for almost everything !

e https://www.bioontology.org/
e Bioportal at http://bioportal.bioontology.org/

:;.3 E THE NATIONAL CENTER FOR Search =~ Search Site @ Search Google LOCIN

“* BIOMEDICAL ONTOLOGY

Technology | Community

B o
Of Current Interest Cite Us

» Update: Manager's Blog: BioPortal . . .
Software Updates National Center for Biomedical Ontology

» Release: NCBO BioPortal 4.23
Released

» News: AgroPortal Web Service

Released (SRl
» Release: NCBO BioPortal 4.22.1 Community » J Technology »

Released

» Release: NCBO BioPortal 4.22
Released

» » NCBO Webinar

AnToUNCOmants - Subscribo Learning About Dissemination Ontology Library Data Annotation
Ontologies ® & Training ®
» NCBO Software Support - Go to BioPortal Go to Annotator
Mailing List Archive NLS
» More Nows & Events 5" Ontology Data Access Using
NCBO > } Forum, Blog, & > j Development Ontologies »
Collaborations Publications
Go to Protégé Go to Resource Index »



https://www.bioontology.org/
https://www.bioontology.org/

Network analysis through datamining

e Mine various databases in search for meaningful connections between
gene/products

@)

@)

@)

@)

Interactome analysis

m  Known or predicted Protein-Protein Interactions
m Several databases : IntAct, BioGrid, mint

e Yeast-two-hybrid
e Litterature...
Co-expression analysis

m E.g microarray data or RNA-Seq data

e http://coxpresdb.jp/
Text-mining
m 77
Combined analysis
m String
m Reactome
m GeneMania
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GeneMania

» Physical interactions
I 64.66%

» Co-expression
[

» Predicted
[ |

» Pathway
B 5.04%

» Co-localization
|

» Genetic interactions
| 1.68%

&)

» Shared protein domains
| 0.84%



Yet other applications of RNA-Seq

e Fusion transcript analysis
o Are there any fusion transcript specific of my tumors ?
e Isoforms or exons-level differential analysis
e Allele-specific expression
o Preferential expression of one of the two alleles in a diploid
genome
o The allele-specific expression of a gene is attributed to a
distinct epigenetic status of its two parental alleles
e Short RNA-Seqg (miRNA)
e 3Single cell analysis
o C1 (Fluidigm)
o 10X Genomics

79



Sequence read Archive (SRA)

:—3 NCBI Resources [v] How To [ My NCBI Sign |

SRA [SRA all [ Search |

Limits Advanced Hely

0 ANNOUNCEMENT: 12 Oct 2011: Status of the NCB| Sequence Read Archive (SRA)

SRA

The Sequence Read Archive (SRA) stores raw sequencing data from the next generation of sequencing platforms including Roche 454 GS System®, lllumina
Genome Analyzer®, Applied Biosystems SOLID® System, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Using SRA Tools Other Resources
Handbook BLAST SRA Home
Download SRA Run browser Trace Archive
E-Utilities Submit fo SRA Trace Assembly
SRA software GenBank Home

e The SRA archives high-throughput sequencing
data that are associated with:

e RNA-Seq, ChlP-Seq, and epigenomic data that are
submitted to GEO 80
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The sequence read archive: explosive growth of sequencing data.

Kodama Y, Shumway M, Leinonen R; on behalf of the International Nucleotide Sequence Database Collaboration.
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Abstract

New generation sequencing platforms are producing data with significantly higher throughput and lower cost. A portion of this capacity is devoted to individual and community scientific projects. As these projects reach publication, raw
sequencing datasets are submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). Archiving experimental data is the key to the progress of reproducible science. The SRA was established as a
public repository for next-generation sequence data as a part of the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is composed of the National Center for Biotechnology Information (NCBI), the European
Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at www.ncbi.nlm.nih.gov/sra from NCBI, at www.ebi.ac.uk/ena from EBI and at trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the
content and structure of the SRA and report on updated metadata structures, submission file formats and supported sequencing platforms. We also briefly outline our various responses to the challenge of explosive data growth.

PMID: 22009675 [PubMed - as supplied by publisher]  Free full text

In 2011 the SRA surpassed 100 Terabases of open-access

genetic sequence reads from next generation sequencing SRA database growth
technologies. The Illumina™ platform comprises 84%

of sequenced bases, with SOLiD™ and Roche/454™ 1000

platforms accounting for 12% and 2%, respectively. The
most active SRA submitters in terms of submitted bases
are the Broad Institute, the Wellcome Trust Sanger
Institute and Baylor College of Medicine with 31, 13
and 11%, respectively. The largest individual global
project generating next-generation sequence is the 1000
Genomes project which has contributed nearly one third 10
of all bases. The most sequenced organisms are Homo
sapiens with 61%, human metagenome with 6% and
Mus musculus with 5% share of all bases. The common

terabases
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Tools to create reproducible workflows

@ https://github.com/common-workflow-language/common-workflow-lan
guage/wiki/Existing-Workflow-systems

® E.g make, snakemake, galaxy, taverna...

http://www.bioconductor.org/help/course-materials/2009/EMBLJune09/Talks/RNAseq-Paul.pdf


https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
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Galaxy server (https://usegalaxy.org/)

e Interface to a computing cluster

e Highly flexible
o Large palette of bioinformatic programs

o ‘Easy’ to add your own

e Fully reproducible workflows
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e A make-like solution

rule targets:
input:
"plots/datasetl.pdf”,
"plots/dataset2.pdf”

rule plot:
input:

"raw/{dataset}.csv"
output:

"plots/{dataset}.pdf"
shell:

Snakemake

mmmmmmm g_pew
.

uffmerg dex_bam Seqc_¢
(
lect_novel cripts | | prep_stat_cuffmerge | | do_bigwig
\
add_g unknoy fCounts _known_genes
(-
| merg and_known | fastqc_raw
NS
(- . |
fCounts, _known_nove! | | mapping i
), RS |
corrplot deseq2 hist_mapping_

"somecommand {input} {output}"

fastqc_trim_pe
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