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Supervised classification - Introduction

= In a previous lesson, we presented the problem of clustering, which consists in grouping
objects without any a priori definition of the groups.

= The groups emerge from the clustering itself (class discovery). Clustering is thus
unsupervised.

= |n some cases, one would like to focus on some pre-defined classes :

a

Q

a

classifying tissues as cancer or non-cancer;
classifying tissues between different cancer types;

classifying genes according to pre-defined functional classes (e.g. metabolic pathway,
different phases of the cell cycle, ...);

= In such cases, we know a priori some elements of each of the envisaged classes. We can
use these elements as training set to build a classifier.

= We can reserve a subset of the known elements to build a testing set, in order to evaluate
the accuracy of the trained classifier.

= After training and testing, the classifier can be used later to assign new objects to the prior
classes.

= This whole process is called supervised classification.



Supervised classification methods

There are many alternative methods for supervised classification
o Discriminant analysis (linear or quadratic)
o Bayesian classifiers
o K-nearest neighbours (KNN)
o Support Vector Machines (SVM)
o Neural networks
a
Some methods rely on strong assumptions.
o Discriminant analysis is based on an assumption of multivariate normality.
o In addition, linear discriminant analysis assumes that all the classes have the same

variance.
The choice of the method thus depends on the structure and on the size of the data sets.
A recurrent problem for all methods is the : when the variable space

contains more dimensions than the number of training objects, the classifier can be

“fooled”. This problem can be reduced by selecting a relevant subset of the variables
(feature selection).



Global versus local classifiers

= As we saw for regression, classifiers can be global or local.

o Global classifiers use the same classification rule in the whole data space. The rule is built on the
whole training set.

* Example: discriminant analysis

o Forlocal classifiers, a rule is made in the different sub-spaces on the basis of the neighbouring
training points.

¢ Example: KNN



Study case 1: discriminating acute leukemia

samples: ALL versus AML

(data from Golub et al., 1999)




Cancer types (Golub, 1999)

= Golub et al. (1999) compared the
profiles of expression of ~7000 human
genes in patients suffering from two
different cancer types: ALL or AML,
respectively.

= Selected the 50 genes most
correlated with the cancer type.

= The article by Golub et al. (1999) was
motivated by the need to develop efficient
diagnostics to predict the cancer type from
blood samples of patients.

= They proposed a “molecular signature” of
cancer type, allowing to discriminate ALM
from ALL.

= This first “historical” study relied on
somewhat arbitrary criteria to select the
genes composing this signature, and the
way to apply them to classify new patients.

= We will present here the classical methods
used in statistics to classify
“objects” (patients, genes) in pre-defined
classes.
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Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
< 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
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genes highly expressed in ALL, the bottom panel shows genes more illustrating the value of a multigene prediction method. For a complete list
highly expressed in AML. Although these genes as a group appear  of gene names, accession numbers, and raw expression values, see www.
correlated with class, no single gene is uniformly expressed across the class, ~ genome.wi.mit.edu/MPR.

= Golub, T. R, Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A,
Bloomfield, C. D. & Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286, 531-7. 6



Golub et al (1999)

= Data source: Golub et al (1999). First historical publication
searching for molecular signatures of cancer type.

= Training set
o 38 samples from 2 types of leukemia

e 27 Acute lymphoblastic leukemia (note: 2 subtypes:
ALL-T and ALL-B)

* 11 Acute myeloid leukemia
o Original data set contains ~7000 genes
o Filtering out poorly expressed genes retains 3051 genes
= We re-analyze the data using different methods.
= Selection of differentially expressed genes (DEG)

o Welch t-test with robust estimators (median, IQR)
retains 367differentially expressed genes with E-value
<=1.

o Top plot: circle radius indicates T-test significance.
o Bottom plot (volcano plot):
® sig = -log10(E-value) >=0

= Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E.
S. (1999). Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science 286, 531-7.
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volcano plot — standardization with median and IQR

golub.t.result.robust$means.diff



Golub 1999 - Profiles of selected genes

Golub, 1999, T-test selection (38 samples, 367 probes)

= The 367 gene selected by the T-test
have apparently different profiles.

o Some genes seem greener for the ALL
patients (27 leftmost samples).

o Some genes seem greener for the
AML patients (11 rightmost samples).

= This image is however hard to interpret,
because genes are not sorted by any
specific criterion.

ALL AML 8




Golub — hierarchical vilustering of DEG genes / profiles

= Hierarchical clustering perfectly

separates the two cancer types (AML

versus ALL).

= This perfect separation is observed for
various metrics (Euclidian, correlation,
dot product) and agglomeration rules

(complete, average, Ward).

= Sample clustering further reveals
subgroups of ALL.

= Gene clustering reveals 4 groups of
profiles:

o AML red, ALL green

o AML green, ALL red

o Overall green, stronger in AML
o Overall red, stronger in ALL

golub ; eu distance; complete linkage

liminf

AML

ALL




Principal component analysis — principle of the method

A. Multidimensional data Variable 2

o nobjects, p variables (in this case p=2) A Factor 1
B. Principal components

o nobjects, p factors Variable 1

Q Each factor is a linear combination of
variables
C. Reduction in dimensions

o Selection of a subset of principal
components

o qfactors, with g < p (in this case, q=1)

B Factor 2
o o
= RV Factor 1
(%) oo actor
° %o o

\

= Gilbert, D., Schroeder, M. & van Helden, J. (2000). Trends in Biotechnology 18) 487-495.



Principal component analysis (PCA)
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Principal component analysis (PCA)
relies on a transformation of a
multivariate table into a multi-
dimensional table of “components”.

With Golub dataset,

o Most variance is captured by the
first component.

o The first component (Y axis)
clearly separates ALL from AML
patients.

o The second component splits the
AML set into two well-separated
groups, which correspond almost
perfectly to T-cells and B-cells,
resp.
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Study case 2: classifying ALL subtypes

(data from Den Boer et al., 2009)




Den Boer et al., 2009 : procedure

. . COALL coh ini » N=
= Den Boer et al (2009) use Affymetrix microarrays ALl cohort (training set; N=190) ' '
to characterize the transcriptome of 190 Acute 1. Estimate nurriber of gene probe sets i inner laop (two-thirds of patients)
} ) i . prediction accuracy in outer loop (a third of patients)
Lymphoblastic Leukemia of different types.
: . , S —
= They use these profiles to select “transcriptome 130 patients ininnerfoop
. ” . . . (Ten-fold cross validation)
signatures” that will serve for diagnostics
purposes: assigning new samples to one of the 3 Training set (115) \
cancer types. 100x  100x
, \ Test set (15) v
= They apply an elaborate procedure relying on an
inner and an outer loop of cross-validation. : 60 patients in outer loop
(Three-fold cross validation)
3. Construct final classifier on total COALL cohort
hyperdiploid a4 DCOG cohort (validation set; N=107)
pre-B ALL 44 4. Determine accuracy of classifier in independent validation cohort
(tested only once)
TEL-AML1 43
T-ALL 36 . 3 - - - - . -
E2A-rearranged (EP) 8 vagure :l I:lgn:iftatlon of a gene-expression signature enabling classification
BCR-ABL 4 Of paediatric
E2A-rearranged (E-sub) 4
MLL 4
BCR-ABL + hyperdiploidy 1
E2A-rearranged (E) 1
TEL-AML1 + hyperdiploidy 1

= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide
classification study. Lancet Oncol 10(2): 125-134. 13



Den Boer 2009 - The transcriptomic signature
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(rlg ht) - T (E2A)-rgearranged

BN ETV6-RUNX1-positive

M Hyperdiploid
BCR-ABL1 (BCR-ABL1-like)t

Figure 2: Clustering of ALL subtypes by gene-expression profiles

Hierarchical clustering of patients from the COALL (left) and DCOG (right) studies with 110 gene-probe sets selected to classify paediatric ALL. Heat map shows which
gene-probe sets are overexpressed (in red) and which gene probe sets are underexpressed (in green) relative to mean expression of all gene-probe sets (see scale bar).
*Patients with E2A-rearranged subclone (15-26% positive cells). Right column of grey bar denotes BCR-ABL1-like cases.

Subtype predictive gene-probe sets (n=110) Subtype predictive gene-probe sets (n=110)
= The training procedure was TR o M T T A s e T ol T | R T
- e s L e i
used to select 100 genes whose HE = : I
combined expression levels can - é p— p—
: S DR N T i i
be used to assign samples to I -
_- g
= The heatmaps show that the - = 2 :
selected genes are differentially g E E1E I
1} =]
expressed g B i
o between subtypes of the g I E—
L . 2 2 sss
training set (left); ; i
o between subtypes of an - I sd — Men —p  sd
expression
n

= Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.
Lancet Oncol 10(2): 125-134. 14



Den Boer 2009 - Accuracy of the classifier

= The signature has an excellent diagnostic value: for the well-represented cancer types, the sensitivity
and specificity are >90%.

» Note: “accuracy” is misleading some subtypes have 98% accuracy with 0% sensitivity, because some
classes are represented by a very small number of samples.

hyperdiploid

pre-B ALL

TEL-AML1

T-ALL

E2A-rearranged (EP)
BCR-ABL
E2A-rearranged (E-sub)
MLL

BCR-ABL + hyperdiploidy
E2A-rearranged (E)
TEL-AML1 + hyperdiploidy

Sn=TP/(TP + FN)

Sp=TN/(TN + FP)

PPV =TP/ (VP + FP)

44
44
43
36

i T R S S S 0 6]

Sensitivity (%) Specificity (%) Positive predictive Negative predictive Accuracy (%)
value (%) value (%)

T-lineage ALL 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100)
ETV6-RUNX1-positive 100 (100-100) 97-8(95-7-97-8) 93-3(87-5-933) 100 (100-100) 98-3(96-7-98-3)
Hyperdiploid 100 (92-9-100) 97-8 (95:7-97-8) 92-6 (86-7-93-3) 100 (97-8-100) 96.7 (95-0-98-3)
E2A-rearranged 100 (75-0-100) 100 (98-2-100) 100 (80-0-100) 100 (98-2-100) 98-3(98-3-100)
BCR-ABL1-positive 0(0-0) 100 (100-100) 0(0-0) 98-3 (98-3-98-3) 983 (98-3-98-3)
MLL-rearranged 0(0-0) 100 (100-100) 0(0-0) 983 (98-3-98-3) 98-3(98-3-98-3)
Overall values 93-5(93-5-957) 786 (78-6-85-7) 93-6 (93-2-95-6) 800 (76-4-84-6) 90-0 (883-91.7)

Data from the COALL study. Data are median (25th-75th percentile). Accuracy is for 100 iterations that include 130 cases to build the classifier and 60 other patients to
determine the diagnostic test values in each interation (three-fold cross validation). Overall values based on the classification of all cases, including the B-other group.

Table 1: Diagnostic test values for the classification of acute lymphoblastic leukaemia by three-fold cross-validation approach

Sensitivity Specificity Positive predictive value Nelgative predictive Accuracy
value
T-lineage ALL 15/15 (100%) 92/92 (100%) 15/15 (100%) 92/92 (100%) 107/107 (100%)
ETV6-RUNX1-positive 24/24 (100%) 81/83 (97-6%) 24/26 (92:3%) 81/81 (100%) 105/107 (98-1%)
Hyperdiploid 28/28 (100%) 74179 (93-7%) 28/33 (84-8%) 74174 (100%) 102/107 (95-3%)
E2A-rearranged 2/2 (100%) 104/105 (99-0%) 2/3 (66-7%) 104/104 (100%) 106/107 (99-1%)
BCR-ABL1-positive 0/1(0%) 106/106 (100%) 0/0 106/107 (99-1%) 106/107 (99-1%)
MLL-rearranged 0/4 (0%) 103/103 (100%) 0/0 103/107 (96-3%) 103/107 (96-3%)
Overall values 69/74(93:2%) 25/33 (75-8%) 69/77 (89:6%) 25/30 (83-3%) 94/107 (87-:9%)

Data are number of predicted cases/total per subtype (%). DCOG cohort (107 patients) used to validate independently the predictive value of classification by gene expression
signature (tested only once). Overall values based on the classification of all cases, including the B-other group. The specificity, positive predictive value, and accuracy are
100% for E2A-rearranged cases if the B-other case with an E2A-rearranged subclone (21% positive cells) is included as true positive case (webappendix).

Table 2: Diagnostic test values for independent validation group

= Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.

Lancet Oncol 10(2): 125-134.
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Den Boer 2009 - Exploring some profiles

= Left: expression for 2 genes selected at random. Each symbol represents one Eh hvpgj\iﬂloid ii
sample, coloured by cancer type. All cancer types are intermingled. b AL i
= Right: expression of the 2 genes with the highest sample-wise variance. The T TAL 36
. . BEp E2A-rearranged (EP) 8
first gene (CD9) separates cell types T and Bt (low expression) from Bh, Bep, Bc BCR-ABL 4
Br (high expression). Bo is dispersed over the whole range. ote afirearranged (Esub) 4
= Question: how can we identify a combination of genes that discriminate the Bch BCR-ABL + hyperdiploidy 1
. . 5 BE E2A-rearranged (E) 1
different subtypes as well as possible Bth TEL-AMLL + hyperdiploidy 1
Den Boer (2009), randomly selected genes 2 genes with the highest variance
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Statistical Analysis of Microarray Data

Discriminant analysis :

methodological principles




Multivariate data with a nominal criterion variable

= One disposes of a set of objects (the sample) which have been
previously assigned to predefined classes.

= Each object is characterized by a series of quantitative variables (the
predictors), and its class is indicated in a separated column (the
criterion variable).

Predictor variables Criterion variable
variable 1{variable 2| ... |variable p class

object 1

object 3

object i

object i+1
object i+2

object n-1

object n

18



Training phase
o The sample is used to build a discriminant function.
Testing phase
o The quality of the discriminant function is evaluated on an independent data set.
Prediction phase

o The discriminant function is used to predict the value of the criterion variable for new
objects.

Discriminant analysis - training

orediction

Predictor variables Criterion variable
variable 1 :variable 2 variable p class
object 1 X11 X21 Xp1 A
object2 x12 ........... x22 ..................................... x - -
object3 x13 .................... x23 ................ ................. x § -
object Ny.in X1n Xon Xpn K

Predictor variables

variable 1 | variable 2 variable p class
object 1 X114 P Xoq Xp1 ?
object 2 X12 X292 Xp2 ?
object 3 X13 X23 Xp3 ?
object Npreq X1n Xon Xpn ?

19



Discriminant analysis

T a

LTraining set]
Objects of
Calibration known class
: )
[Testlng set ]
Discriminant \ /
function

. . . Confusion table
Prediction 4[ Predicted class ]—' Comparison —[ (for evaluation) }
Objects of
unknown class

Prediction 4[ Predicted class ]

20



Conceptual illustration with a single predictor variable

= Given two predefined classes (A and B), try intuitively to assign a class to each new object
(X positions denoted by vertical black bars).

= How confident do you feel for each of your predictions ?

m1=0; s1=2; n1=100; m2=10; s2=2; n2=100 m1=4; s1=2; n1=100; m2=6; s2=2; n2=100

8 _.. ........ . D y Zo-e , ........ . g - [ \ X-- o L VWRZ ; ........ t:.
N . 1 < ........... | .| = Whatis the effect
: : : : of the respective
N R A ® 7 means ?
o e - . || = Whatis the effect
e : : L : : 1 ‘ } f of the respective
N 0 5 10 15 s 0 5 10 M N 0 5 1 M standard
m1=0; s1=4; n1=100; m2=10; s2=4; n2=100 m1=3; s1=2; n1=1000; m2=7; s2=2; n2=100 m1=3; s1=2; n1=100; m2=7; s2=2; n2=1000 . . ,?
= -------- E Wz = ~ e e ......... TN — ,§ = TP e L dev|at.|ons ‘
o | N e T N / ___________ || = Whatis the effect
o § : : : e : : of the population
| < [ IR | FUSURURR | Y1 IR SRR I S - SizeS ?
=) :— __""./ i
0 5 10 5 s 0 5 10 5 s 0 5 10 15
m1=0; s1=2; n1=100; m2=10; s2=4; n2=100 m1=0; s1=4; n1=100; m2=10; s2=2; n2=100 m1=4; s1=1; n1=100; m2=8; s2=4; n2=100
< X e Wz ......... ‘_. 2 _.A ......... _ X s Wz ........ £ _..-_A ......... X op - yz ......... _ ........ t.
: ; ; : =B : : :
o ] i \\ | )
o o : ——// ——"""#’




Conceptual illustration with a single variable

= In this conceptual example, the two
populations have the same mean and
variance.
m1=0; s1=2; n1=100; m2=10; s2=2; n2=100 = To which group (A or B) would you
o iz N 4-.....|| @ssign the points at coordinate X, y, z, 1,
: z respectively ?

22




Conceptual illustration with a single variable

= Same exercise.

= This example shows that the
assignation is affected by the position of

m1=3; s1=2; n1=100; m2=7; s2=2; n2=100 the group centres.
_.....:...... ......................; ...... X ................ ..y. : :

23




Conceptual illustration with a single variable

= Same exercise.
= When the centres become too close,
some uncertainty is attached to some
m1=4; s1=2; n1=100; m2=6; s2=2; n2=100 points (y, but also partly z).
: : .|| = There is thus an effect of group
distance.

24




Conceptual illustration with a single variable

= Same exercise.

= The centres are in the same position as
in the first example, but the variance is
m1=0; s1=4; n1=100; m2=10; s2=4; n2=100 larger.
S IOV S NV, W NR—— T— ¢ = This affects the level of separation of
: : the groups, and raises some uncertainty
about the group membership of z.

= The group variance thus affects the
assignation.

25




Conceptual illustration with a single variable

= Same exercise.

= This illustrates the effect of the sample
size: if a sample has a much larger size
m1=3; s1=2: n1=1000; m2=7: s2=2; n2=100 than another one, it will increase the
z : likelihood that some observations were
issued from this group.

.x ................

Y e

26




Conceptual illustration with a single variable

= Same exercise.

= This is the symmetric
| m1=3; $1=2; n1=100; m2=7; s2=2; n2=1000 | situation of the preceding
B e e Yy : t-— figure.

= Although the group centres
and variances are identical,
the change of sample sizes
completely modifies the
group assignations.

= This is an effect of prior
probability.

27




Conceptual illustration with a single variable

= Same exercise.

= If the two groups have
m1=0; s1=2; n1=100; m2=10; s2=4; n2=100 _| different dispersions, it will
AN E E4 AN S t-—  affect their likelihood to be
5 | the originators of some
observations.

= The relative dispersion of
the groups affects the
assignation.

28




Conceptual illustration with a single variable

= Same exercise.

= Symmetrical situation of the
| m1=0; s1=4; n1=100; m2=10; s2=2; n2=100 | preceding one: same
1 Yz < t-|  centres, same sample
5 5 || sizes, but the relative
variances vary in the
opposite way.

= The relative dispersion of
the groups affects the
assignation.

29




Conceptual illustration with a single variable

s Same exercise.

= When the dispersion of one
m1=4; s1=1; n1=100; m2=8; s2=4; n2=100 group becomes too high, a
4. o v § P simple boundary is not
5 5 5 sufficient anymore to separate
the two groups.

= [n this example, we would
classify the leftmost (x) and
rightmost (t, and maybe z)
objects as B, and the central
ones (y) as A.

= \We need thus two boundaries
to separate these groups.

= The relative dispersion of the
groups affects the assignation.

30




Conceptual illustration with a single variable

= Same exercise.
= Symmetrical situation of the

| m1=4; s1=1; n1=100; m2=8; s2=4; n2=100 | preceding figure.
47 R Y- -t m The relative dispersion of the
| f | groups affects the assignation.

31




Conceptual illustration with two predictor variables

= Given two predefined classes (A and B), try intuitively to assign a class to each new object
(black dots).

» How confident do you feel for each of your predictions ?

mu1=(5.10); |S$1|=1; n1=1000
{[R2=4: R=1368

mu2=(10,5)} mu1=}5 10{ |S1 =9; n1:}8gg

mu2=(10,5); |S2|=9} n2

c | || = Whatis the effect
: ‘ of the respective
means ?

s What is the effect
of the respective
0 5 10 15 0 5 10 15 0 5 10 15 Standard
" " " deviations ?

IS3[238: n3=1000 105 '|ss‘4| 2 N3=1000 muz=io.5); 182 “&%%'5 _

= What is the effect
of the

correlations

between the two

variables ?

= Note that the two
i population can
have distinct
correlations
(orientations of
the clouds)

mui= 5 10
mu2= bs{

mu1= ; |S1 =0.36;
mu2= $2|=0.21;

=0
: =
ll II
—_—
[=1=1
88

X1 X1 X1 32




Conceptual illustration with two variable

= The same concepts can be
illustrated in a two-dimensional
feature space.

mu1=(5,10); |S1|=1; n1=1000 L ]
mu2=(10,5); |S2|=1; n2=1000 __| = Some additional concepts will
U‘_) O ................................... ............. T appear.
' ' —°k . || = Try to assign intuitively the
- ‘ points 1 to 6 to either group A
or group B.
‘6
| | |
0 5 10 15
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Conceptual illustration with two variable

= Effect of the group centre
location.

mu1=(5,10); |S1]=1; n1=1000
mu2=(7,8); |S2|=1; n2=1000
o [ 1 T T
s s —A
s s —¢
0.... ®
o .l © VOUREAREN Y K7 SSP A SR
a L.,
o ‘.; )
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Conceptual illustration with two variable

= Effect of the group variance.

mu1=(5,10); |S1|=9; n1=1000
mu2=(10,5); |S2|=9; n2=1000

15
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Conceptual illustration with two variable

= Effect of the group variance.

mu1=(5,10); |S1|=36; n1=1000
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Conceptual illustration with two variable

m Effect of the relative
variances.

mu1=(5,10); [S1|=16; n1=1000
mu2=(10,5); |S2|=1; n2=1000
W '.’.o ........ e ... PTTTT
2 —
b
o b
«6
o 5
I | I
0 5 10 15
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Conceptual illustration with two variable

m Effect of the relative
variances.

mu1=(5,10); |S1|=400; n1=1000
mu2=(10,5); |$2]|=0.09; n2=1000

15
&
.
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-
a

10
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Conceptual illustration with two variable

= Effect of the covariance.
between columns of the group.

mu1=(6,9); |S1|=0.51; n1=1000
mu2=(9,6); |S2|=0.51; n2=1000

L O S
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s —B

P %
o _ H
- N T \

-V gE” M

" o
0 - f X
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o = 5
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Conceptual illustration with two variable

= Effect of the covariance.
between columns of the group.

mu1=(6,9); |S1|=0.51; n1=1000
mu2=(9,6); |S2|=0.51; n2=1000

15

40




Conceptual illustration with two variable

m Effect of the relative
covariance. between columns

of the group.
mu1=(6,9); |S1|=0.36; n1=1000
mu2=(9,6); |S2|=0.21; n2=1000 __| = The two groups have now
e PP ................................... ............. o different Covariance matriCeS:
‘ —B the clouds are elongated in
’ different directions.
= This affects group assignments
. (example point 2).
=g . 2
6
= 5
1 1 1
0 5 10 15
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Classification rules

= New units can be classified on the basis of rules based on the calibration sample

= Several alternative rules can be used
o Maximum likelihood rule: assign unit u to group g if

f(X1g)>f(X1g) forg'=g

o Inverse probability rule: assign unit u to group g if

P(Xlg)>P(XIlg') forg'=g

o Posterior probability rule: assign unit u to group g if

Where

X istheunitve«P(g|X)>P(g"X) fO}"g';ﬁg

gg’ are two groups
f(X|g) is the density function of the value X for group g

PX|g) is the probability to emit the value X given the group g
P(glX) s the probability to belong to group g, given the value X
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Posterior probability rule

= The posterior probability can be obtained by application of Bayes' theorem

P(X1g)P
P(g | X) = ( g) (g) Where
P(X) o X isthe unit vector
o g is a group
o k is the number of groups
P(X | o) o s, isthe prior probability of group g
P(g1X) = 8

EP(X 1),
g'=1
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Maximum likelihood rule - multivariate normal case

= If the predictor variable is univariate normal

= If the predictor variable is multivariate normal

1 e
1 [_E(X_“g) Zgl (X_“g)l
f(X1g)= - e
(27) ‘Z g‘

Where

o X is the unit vector

o p is the number of variables

QY is the mean vector for group g

a 2 is the covariance matrix for group g

44



Bayesian classification in case of normality

= Each object is assigned to the group which minimizes the function

-y L L)
(Zn)P ‘Zg‘
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Linear versus quadratic classification rule

= There is one covariance matrix per group g.

o This matrix indicates the covariance between each column (variable) of the
data set, for the considered group.

o The diagonals of this matrix represent the variance (=covariance between a
variable and itself)

= When all covariance matrix are assumed to be identical

o The classification rule can be simplified to obtain a linear function. This is
referred to as Linear Discriminant Analysis (LDA)

o In this case,the boundary between groups will be a plane (2 variables) or a
hyper-plane (more than 2 variables).

= If the variances and covariances are expected to differ between groups
o A specific covariance matrix has to be used for each group.

o The boundary between two groups is a curve (with two variables) or a hyper-
surface (more than 2 variables).

o This is referred to as Quadratic Discriminant Analysis (QDA)
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Evaluation of the discriminant function - confusion table

= One way to evaluate the accuracy of the discriminant function is to apply it to the sample
itself. This approach is called internal analysis.

= The known and predicted class are then compared for each sample unit.
=  Warning : internal analysis is too optimistic. This approach is not recommended.

Predictor variables Criterion variable
variable 1 {variable 2| ... {variable p known predicted

object 1

object 2

object 3

object i

object i+1
object i+2

object n-1
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Evaluation of the discriminant function - confusion table

= The results of the evaluation are summarized in a confusion table,
which contains the count of the predicted/known combinations.

= The confusion table can be used to calculate the accuracy of the

predictions.
Confusion table
Known
PHO MET CTL SUM
b PHO 8 0 0 8
_‘Q’ MET 0 1 1 2
g CTL 5 18 81 104
a |SUM 13 19 82 114

Errors 24 21.05%
Correct 90 78.95%
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Evaluation of the discriminant function - plot

= The two first discriminant
functions can be used as X and
Y axes for plotting the result.

= In the same way as for PCA, X

Letters indicate the and Y axes represent linear
predicted class, colors the combinations of variables
known class = However, these combinations

are not the same as the first
factors obtained by PCA.

o When comparing with PCA
figure, the PHO genes are
now all located nearby the X
axis.
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External analysis

= Using the sample itself for evaluation is problematic, because the evaluation is biased (too
optimistic). To obtain an independent evaluation, one needs two separate sets : one for
calibration, and one for evaluation. This approach is called external analysis.

= The simplest setting is to split randomly the sample into two sets (holdout approach) :
o the training set is used to build a discriminant function
o the testing set is used for evaluation

Predictor variables Criterion variable
variable 1:variable 2; ... :variable p class
g fobjectt | xiy  ©oxer o X | A .
2 lobect2 | xp o oxe .. X A
.% object 3 X143 X23 . Xp3 B
s _ : ..
object Nrain X1n Xon E Xpn K
Predictor variables Criterion variable
variable 1:variable 2;: ... :variable p known predicted
g |object1 | X LKt e X Aol Ao
B e S O SO ST NS N B A
:'5 object 3 X13 X23 eeed Xp3 B B
object nst Xi1n Xon E Xpn K K 5



Leave-one-out (LOO) validation

= When the sample is too small, it is problematic to loose half of it for
testing.

= In such a case, the leave-one-out (LOO) approach is recommended :
1. Discard a single object from the sample.

With the remaining objects, build a discriminant function.

Use this discriminant function to predict the class of the discarded object.

Compare known and predicted class for the discarded object.

lterate the above steps with each object of the sample.

Al A
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Profiles after prediction

= Example:

o Gene expression data

o Linear discriminant analysis
: : : : : o Leave-one-out cross-validation.
--------------- = Genes predicted as "PHQO" have

--------------- generally high levels of response
(but this is not true for all of them)

= A very few genes are predicted as
MET.

= Most genes predicted as control
have a low levels of regulation.
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Analysis of the misclassified units

= The sample might itself contain classification errors. The apparent misclassifications can
actually represent corrections of these labelling errors.

= Example : gene expression data - linear discriminant analysis
All the genes "mis"classified as control have actually a flat expression profile.

o Most of them are MET genes (indeed, these are not expected to respond to phosphate)
o the 4 PHO genes (blue) have a flat profile
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Evaluation with leave-one-out

= Leave-one-out is more severe for evaluating the
accuracy of predictions.
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Choice of the prior probabilities

The classes may have different proportions between the sample and the

population

For example, we could decide, on the basis of our biological knowledge,
that it is likely to have 1% rather than 11% of yeast gene responding to

phosphate.

Population
Class | Sample Priors from Arbitrary
sample priors

PHO 13 659 58

11% 11% 1%
MET 19 964 58

17% 17% | 1%
cTL | 82 | 4160 5667

72% 72% 98%
TOTAL 114 5783 5783
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Prediction phase
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Feature selection

=variable selection)
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Feature selection (variable selection)

= One approach to circumvent this problem is to select a subset of variables only.

= This subset of variables can be selected according to different rules.

o Variable ordering: variables are ordered according to some criterion, and the topmost variables
are retained.

® Inter-group distances calculated in each variable separately. This inter-group distance can be
calculated with the t-test.

® P-value of the t-test (the P-value is not always linear with the t statistics, since the number of
observations can vary from row to row if there are missing values).

o Variables combinations

® Selection of a subset of variables and estimation of the capability of each subset to classify
correctly.

®* The number of possible combinations of variables increases exponentially with the number of
variables.

o Stepwise selection

® Stepwise selection is an heuristics to select a subset of variables in a quadratic time, but they
do not guarantee optimality.

= Forward selection
= Backward selection
= Forward-backward selection
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Over-fitting

= A typical application of supervised Number of variables and over-fitting
classification is to classify random tests

experiments (e.g. patient types) on

the basis of the expression 2 4 — LoO
profiles. — internal
. . -+ -+ expected (balanced classes) g
= In this case, the objects are the - - expected (majority class)
experiments, and the variables the o [T A I A A
genes. o
= This raises a problem of over-
fitting: the number of variables is
much |arger than the number of g S D OO SO OO SUUSR PR PPURTPPRUR ......................................................
objects in the training set. =
S . :
= In such situations, the classifier will 9 : My Ne— ' —f— O —— ¢
tend to build a classification rule R IS 0 ‘./ ............................ STTTITTITARE HATTTTTTTTTs TTTIIeeeess s
which perfectly fits the training set, e ¢ ¢ : : : : :
but fails to generalize to other i gb __________________________________
observations. f : -
o— ¢
I I I I I I
0 100 200 300 400 500

Number of variables (p)
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Variable ordering with the t-test

LDA - variables ordered by ttest
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Forward stepwise feature selection

forward stepwise selection — Stepwise PDA - Error rates
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Leave-one-out cross-validation — 20 genes , top-ranking by variance

= Cross-validation of Linear Discriminant Analysis with Den Boer (2009).
= Variables: 20 top-ranking probesets sorted by decreasing variances.

= Hit rate: proportion of correct predictions
o Correct (diagonal): 152
o Total: 187
o Hitrate: 81.3%
o Errorrate: 18.7%

loo.predicted.class
sample.labels Bc BE BEp BEs Bh BM Bo Bt

Bc
Bch
BE
BEp
BEs
Bh
BM
Bo
Bt
Bth
T

QOO0 WO OOQOQOO OO

0

QO QOO0 O0O~OO

QONNOOQORNRO OO

QOO KR NOKRUWOOOO

0

QOO NOOQOQOOOO

QOO RMWOOQOQOOOO

4

N WkROO
R QQO QO QOO

N
QO kR U
W
QO \©
W
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Leave-one-out cross-validation — 20 genes top-ranked by various criteria

Known class

Cross-validation of Linear Discriminant Analysis with Den Boer (2009).
Variables: 20 top-ranking probesets sorted by multi-criterion rank (variance + two-

groups Welch tests).

Hit rate: proportion of correct predictions

o Correct (diagonal): 164

o Total: 187

o Hitrate: 87.7%

o Errorrate: 12.3%

Predicted class
Bc Bch BE BEp BEs Bh BM Bo Bt Bth T| Total

Bc 00 00 1 0 0 O 3 0 0 O 4
Bh |0 o 0 o 0O O O O O O O 0
BE o 00 O O O O O 0 0 O 0
BEp |0 0 1 6 1 0 O 0O O 0 O 8
BEs |0 0O 0 1 2 0 O 1 0 0 O 4
Bh o 0 0O O 1 41 0 2 0 0 O a4
BM |0 0O 0O O O O 2 1 1 0 o0 4
Bo 2 1.0 0 1 3 1 3 2 o0 O 44
Bt o0 0 0O O O O O O 43 0 O 43
Bh |O O 0O O O O O O O 0 O 0
T O 0 0 0O O O0 O 0 0 36 36
Total [ 2 1 1 8 5 44 3 41 46 0 36| 187
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Leave-one-out cross-validation — 100 genes top-ranked by various criteria

= Cross-validation of Linear Discriminant Analysis with Den Boer (2009).

= Variables: 100 top-ranking probesets sorted by multi-criterion rank (variance + two-groups
Welch tests).
= Hit rate: proportion of correct predictions
o Correct (diagonal): 168
o Total: 187
o Hitrate: 89.9%
o Errorrate: 10.2%

. i
loo.predicted.class Bt - o
sample.labels Bc BEp BEs Bh BM Bo Bt T 8o
Bc 0 0 0O 2 0 2 0 O 2 - L 30
Bch O 0 0O 0 0 0 0 O § . I
BE 0 0 0O 0 0 0 0 O 8
BEp O 8 0 0 O 0 O 0 g eee m [
BEs 0 O 3 0 0 1 0 O 8 e - :
Bh 0 0 l1 41 0 2 0 O BE L - 10
BM 0 0 l1 0 2 1 0 O Be L
Bo 2 1 0 5 035 1 0 e - i .
Bt 0 0 0O 0 0 043 o0 T S ] L
Bth 0 0 0 0 0 0 0 0 Bc Bch BE BEp BEs Bh BM Bo Bt Bth T
P 0 0 0 0 0 0 0 36 sample.labels
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Leave-one-out cross-validation — 200 genes top-ranked by various criteria

= Cross-validation of Linear Discriminant Analysis with Den Boer (2009).

= Variables: 200 top-ranking probesets sorted by multi-criterion rank (variance + two-groups
Welch tests).

= Hit rate: proportion of correct predictions
o Correct (diagonal): 15

a Total: 187
o Hitrate: 8%
a Error rate: 92%

loo.predicted.class
sample.labels Bc Bch

Bc
Bch
BE
BEp
BEs
Bh
BM
Bo
Bt
Bth
T
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Technical note: approach followed by DenBoer (differs from here)

Bh hyperdiploid 44

= Multi-groups discrimination with 6 subtypes only (T-ALL, ETV6- Bo pre-BALL 44
RUNX1-positive, hyperdiploid, E2A- rearranged, BCR-ABL1-positive Bt TEL-AML1 43
and MLL-rearranged) T TAL 36

.. BEp E2A-rearranged (EP) 8

= Training: 190 cases (COALL) Bc  BCR-ABL 4
= Innerloop BEs E2A-rearranged (E-sub) 4
o Three-fold cross-validation: 2/3 cases for training, 1/3 for BM MLL 4
evaluation. Bch BCR-ABL + hyperdiploidy 1

BE E2A-rearranged (E) 1

o 100 iterations Bth TEL-AML1 + hyperdiploidy 1

= Variable filtering:

o for each subtype, selection of the 50 lowest p-values with
Wilcoxon’s test.

o For BCR-ABL1 and MLL, used 40 probesets from another source.
= Learning algorithm: radial-kernal support vector machine.
= Selection of the least number of probes by backward selection.
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Summary - discriminant analysis

= Discriminant analysis is based on a set of quantitative predictor variables, and a single
nominal criterion variable.

= A sample is used to build a set of discriminant functions (calibration), which is then used to
assign additional units to classes (prediction).
= The discriminant function can be either linear or quadratic. Linear discriminant analysis
relies on the assumption that the different classes have similar covariance matrices.
= The accuracy of the discriminant function can be evaluated in different ways.
o On the whole sample (internal approach)
o Splitting of the sample into training and testing set (holdout approach)

o Successively discard each sample unit, build a discriminant function and predict the discarded unit
(leave-one-out)

= The efficiency decreases with the p/N ratio. When this ratio is too low, there is a problem of
over-fitting.

m  Stepwise approaches consist in selecting the subset of variables which raises the highest
efficiency.
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Statistical Analysis of Microarray Data

KNN classifiers




K nearest neighbours

= Discriminant analysis is a global approach to classification: the discriminant rule is
established in the same way for the whole data space, on the basis of group centres and
covariance matrices. Discriminant analysis is thus a global classifier.

= K nearest neighbour (KNN) classifiers takes a very different approach: at each position of

the feature space
o The K closest neighbour points from the training set are identified;

o A vote is established as a function of the relative proportions of the respective training groups in
this set of neighbours.

= KNN is thus a local classifier.
= The choice of K drastically affects group assignments.
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Statistical Analysis of Microarray Data

Support Vector Machines




Web resources

= Gist
o Download http://microarray.cpmc.columbia.edu/qist/
o Web interface http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi.

71



Old slides



= There is a subset of objects (in the case below, genes) which can be assigned to
predefined classes (e.g. “phosphate”, “methionine” or “control”), on the basis of external
information (e.g. biological knowledge).

= These classes will be used as criterion variable.
= Note : the sample class labels might contain some errors (misclassified objects).

Phosphate-responding genes Methionine-responding genes Control genes
# ORF Gene name Family # ORF Gene name Family # ORF Gene name Family
1| YBR093C PHO5 PHO 14 | YBR213W MET8 MET 33| YALO38W CDC19 CTL
2| YDR481C PHO8 PHO 15 | YDR253C MET32 MET 34| YBLOOSW PDR3 CTL
3| YARO71W PHO11 PHO 16 | YDR502C SAM2 MET 35 | YBLOOSW-A  YBLOO5W-A CTL
4| YHR215W PHO12 PHO 17 | YER091C MET6 MET 36 | YBLOOSW-B  YBLOO5W-B CTL
5| YOLOO1W PHO80 PHO 18 | YFRO30W MET10 MET 37| YBLO30C PET9 CTL
6| YGR233C PHOB81 PHO 19 | YHLO36W MUP3 MET 38| YBROO6W UGA5 CTL
7| YML123C PHO84 PHO 20 | YILO46W MET30 MET 39| YBRO18C GAL7 CTL
8| YPLO31C PHO85 PHO 21| YIRO17C MET28 MET 40 | YBRO20W GAL1 CTL
9| YJL117W PHO86 PHO 22 | YJRO10W MET3 MET 4| YBR115C LYS2 CTL
10 | YCRO037C PHO87 PHO 23| YJR137C ECM17 MET 42 | YBR184W YBR184W CTL
11 | YBR106W PHO88 PHO 24 | YKLOO1C MET14 MET 43| YCLO18W LEU2 CTL
12 | YBR296C PHO89 PHO 25 | YKROGOW MET1 MET 4| YDL131W LYS21 CTL
13 | YHR136C SPL2 PHO 26 | YLR180W SAM1 MET 45| YDL182W LYS20 CTL
27 | YLR303W MET17 MET 46| YDL205C HEM3 CTL
28 | YLR396C VPS33 MET 47| YDL210OW UGA4 CTL
29| YNL241C ZWF1 MET 48 | YDRO11W SNQ2 CTL
30 | YNL277W MET2 MET 49 | YDRO44W HEM13 CTL
31| YOLO64C MET22 MET 50 | YDR234W LYS4 CTL
32 | YPLO38W MET31 MET 51| YDR285W ZIP1 CTL
112 | YPRO65W ROX1 CTL
113 ] YPR138C MEP3 CTL
114 | YPR145W ASN1 CTL
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2-dimensional visualization of the sample

Second component

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

undef
e CTL
® PHO

.......................................

First component

If there are many variables, PCA
can be used to visualize the
sample on the planed formed by
the two principal components.

Example: gene expression data

o MET genes seem
undistinguishable from CTL genes
(they are indeed not expected tor
espond to phosphate)

o Most PHO genes are clearly
distant from the main cloud of
points.

o Some PHO genes are mixed with
the CTL genes.
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