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Supervised classification - Introduction 

!  In a previous lesson, we presented the problem of clustering, which consists in grouping 
objects without any a priori definition of the groups.  

!  The groups emerge from the clustering itself (class discovery). Clustering is thus 
unsupervised. 

!  In some cases, one would like to focus on some pre-defined classes : 
"  classifying tissues as cancer or non-cancer; 
"  classifying tissues between different cancer types; 
"  classifying genes according to pre-defined functional classes (e.g. metabolic pathway, 

different phases of the cell cycle, ...); 
"  … 

!  In such cases, we know a priori some elements of each of the envisaged classes. We can 
use these elements as training set to build a classifier. 

!  We can reserve a subset of the known elements to build a testing set, in order to evaluate 
the accuracy of the trained classifier. 

!  After training and testing, the classifier can be used later to assign new objects to the prior 
classes.  

!  This whole process is called supervised classification.  
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Supervised classification methods 

!  There are many alternative methods for supervised classification 
"  Discriminant analysis (linear or quadratic) 
"  Bayesian classifiers 
"  K-nearest neighbours (KNN) 
"  Support Vector Machines (SVM) 
"  Neural networks 
"  ... 

!  Some methods rely on strong assumptions. 
"  Discriminant analysis is based on an assumption of multivariate normality. 
"  In addition, linear discriminant analysis assumes that all the classes have the same 

variance. 
!  The choice of the method thus depends on the structure and on the size of the data sets. 
!  A recurrent problem for all methods is the risk of over-fitting: when the variable space 

contains more dimensions than the number of training objects, the classifier can be 
“fooled”. This problem can be reduced by selecting a relevant subset of the variables 
(feature selection). 
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Global versus local classifiers 

!  As we saw for regression, classifiers can be global or local.  
"  Global classifiers use the same classification rule in the whole data space. The rule is built on the 

whole training set. 
•  Example: discriminant analysis 

"  For local classifiers, a rule is made in the different sub-spaces on the basis of the neighbouring 
training points. 
•  Example: KNN 
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Study case 1: discriminating acute leukemia 
samples: ALL versus AML 

(data from Golub et al., 1999) 



Cancer types (Golub, 1999) 

!  Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., 
Bloomfield, C. D. & Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression 
monitoring. Science 286, 531-7.!

!  Golub et al. (1999) compared the 
profiles of expression of ~7000 human 
genes in patients suffering from two 
different cancer types: ALL or AML, 
respectively.!

!  Selected the 50 genes most 
correlated with the cancer type.!

!  The article by Golub et al. (1999) was 
motivated by the need to develop efficient 
diagnostics to predict the cancer type from 
blood samples of patients. 

!  They proposed a “molecular signature” of 
cancer type, allowing to discriminate ALM 
from ALL. 

!  This first “historical” study relied on 
somewhat arbitrary criteria to select the 
genes composing this signature, and the 
way to apply them to classify new patients. 

!  We will present here the classical methods 
used in statistics to classify 
“objects” (patients, genes) in pre-defined 
classes. 
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Golub et al (1999) 

!  Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., 
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. 
S. (1999). Molecular classification of cancer: class discovery and class prediction by 
gene expression monitoring. Science 286, 531-7. 

!  Data source: Golub et al (1999). First historical publication 
searching for molecular signatures of cancer type. 

!  Training set 
"  38 samples from 2 types of leukemia 
•  27 Acute lymphoblastic leukemia (note: 2 subtypes: 

ALL-T and ALL-B) 
•  11 Acute myeloid leukemia 

"  Original data set contains ~7000 genes 
"  Filtering out poorly expressed genes retains 3051 genes 

!  We re-analyze the data using different methods. 
!  Selection of differentially expressed genes (DEG) 

"  Welch t-test  with robust estimators (median, IQR) 
retains 367differentially expressed genes with E-value 
<= 1. 

"  Top plot: circle radius indicates T-test significance. 
"  Bottom plot (volcano plot):  
•  sig = -log10(E-value) >= 0 
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Golub 1999 - Profiles of selected genes 

!  The 367 gene selected by the T-test 
have apparently different profiles. 
"  Some genes seem greener for the ALL 

patients (27 leftmost samples). 
"  Some genes seem greener for the 

AML patients (11 rightmost samples). 

!  This image is however hard to interpret, 
because genes are not sorted by any 
specific criterion.  

8 AML	
ALL	




Golub – hierarchical vlustering of DEG genes / profiles 

!  Hierarchical clustering perfectly 
separates the two cancer types (AML 
versus ALL). 

!  This perfect separation is observed  for 
various metrics (Euclidian, correlation, 
dot product) and agglomeration rules 
(complete, average, Ward). 

!  Sample clustering further reveals 
subgroups of ALL. 

!  Gene clustering reveals 4 groups of 
profiles: 
"  AML red, ALL green 
"  AML green, ALL red 
"  Overall green, stronger in AML 
"  Overall red, stronger in ALL 
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golub ; eu distance; complete linkage
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Principal component analysis – principle of the method 

!  Gilbert, D., Schroeder, M. & van Helden, J. (2000). Trends in Biotechnology 18) 487-495. 

A.  Multidimensional data 
"  n objects, p variables (in this case p=2) 

B.  Principal components 
"  n objects, p factors 
"  Each factor is a linear combination of 

variables 

C.  Reduction in dimensions 
"  Selection of a subset of principal 

components 
"  q factors, with q < p (in this case, q=1) 

Factor 2!

Factor 1!

Variable 2!

Variable 1!

Factor 1!A 

B 

C 



Principal component analysis (PCA) 

!  Principal component analysis (PCA) 
relies on a transformation of a 
multivariate table into a multi-
dimensional table of “components”. 

!  With Golub dataset,  
"  Most variance is captured by the 

first component. 
"  The first component (Y axis) 

clearly separates ALL from AML 
patients. 

"  The second component splits the 
AML set into two well-separated 
groups, which correspond almost 
perfectly to T-cells and B-cells, 
resp.  

11 

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

PC1

PC
2

X1_ALL_B

X2_ALL_T

X3_ALL_T

X4_ALL_B

X5_ALL_B

X6_ALL_T

X7_ALL_B

X8_ALL_B

X9_ALL_T

X10_ALL_T

X11_ALL_T

X12_ALL_B
X13_ALL_B

X14_ALL_T

X15_ALL_B
X16_ALL_B

X17_ALL_B

X18_ALL_B

X19_ALL_B

X20_ALL_B

X21_ALL_B

X22_ALL_B

X23_ALL_T

X24_ALL_B X25_ALL_B
X26_ALL_B

X27_ALL_B

X28_AML

X29_AML

X30_AML

X31_AML
X32_AML
X33_AML
X34_AML

X35_AML

X36_AML
X37_AML

X38_AML

−5 0 5 10

−5
0

5
10

11235566
96 108

117126

135

158 168
171

172174
178182

187

192

202

205237

239
248
253
259

283
297
304307

320

323329

330

337344
345 364

376

377

378389

394

400

401

419422
436

453

462

475

479

489

494

515

519

522

523

542

546

557
560561

566

617

621 622
624

648

666

686695
701

703
704713

717
725

735

738

746

763

766 773

785 789

792

801
803807
808

829

830

839
841

849
858

860

862

866

877 896

904

906
922

932
937

940
963 968

971

984
988

995
1005

1006

1009

1010
10161019 1025

1030

1037

1038

1042 1045
1048

1057

1060

1062
1066 1069

1070

1078

1081

1086

1094
1101
1110

1112

1122

1124

11261145

1162

1171
1181

11931202

12201221
1225 12291238

1242
1253

1271

1282

1293

1298

13271329

1334
1337

1348

1368 13781381 13831390

1391

13961406

1411
1413

1417

1425
1430

1439

1441

1445
1448

1453

1455

1456
1459146814701489

149314971513 1523
15241542

1553

155615591564
15851594

1598
1601

1604

1611

16161629 16381640
1647

1648

1652
1653

16651668

1671

1676

1702
1712

1719

17231732

1754

1766

1768

1774
1778

1784

1787
1797

1807
1811

1817

1821

1829

1834

1849

1869

1881

1882

1883

1884

19011903

1907

1909

1910

1911

1916
1920

19261938

1939

1948

1955

1959
1963

1975

1977

1978
1979

19851993

1995

1998

2002

2020
2052

2056

2065

2072

2079
2080

2087

2124

2132
2155

217421792180 2182 2197

21982208
22162235

2236

2265

2266

22762289

2306

2307 2322
2329

2347
2348
2355

2356

2364

2365

2386

2402

2410
2418
2430

2438

2444

2456

2459

2466
2489

2500

25062512

2553

2570
25892593

2600

2602

2616
2627

2631

2636

2645

2647

2656

2661

2663

2664
2670

2673

2681

2702

2734

2736 2743
2749 27502753

2761

2786

2791

2794

2800

2801 2802

28132829

2851
2860 28702874
28892902

29202921
2922

2939

2950

2952
2958

2977

29893011

30313046

golub.pca

Va
ria
nc
es

0
10

20
30

40
50

60



Study case 2: classifying ALL subtypes 
(data from Den Boer et al., 2009) 



Den Boer et al., 2009 : procedure 

!  Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide 
classification study. Lancet Oncol 10(2): 125-134. 

!  Den Boer et al (2009) use Affymetrix microarrays  
to characterize the transcriptome of 190 Acute 
Lymphoblastic Leukemia of different types. 

!  They use these profiles to select “transcriptome 
signatures” that will serve for diagnostics 
purposes: assigning new samples to one of the 
cancer types. 

!  They apply an elaborate procedure relying on an 
inner and an outer loop of cross-validation.  

13 



Den Boer 2009 - The transcriptomic signature 

!  Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 

!  The training procedure was 
used to select 100 genes whose 
combined expression levels can 
be used to assign samples to 
cancer subtypes. 

!  The heatmaps show that the 
selected genes are differentially 
expressed  
"  between subtypes of the 

training set (left); 
"  between subtypes of an 

independent testing set 
(right). 

14 



Den Boer 2009 - Accuracy of the classifier 

!  The signature has an excellent diagnostic value: for the well-represented cancer types, the sensitivity 
and specificity are >90%. 

!  Note: “accuracy” is misleading some subtypes have 98% accuracy with 0% sensitivity, because some 
classes are represented by a very small number of samples.  

!  Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 15 

Sn = TP / (TP + FN) 
 
Sp = TN / (TN + FP) 
 
PPV = TP / (VP + FP) 



Den Boer 2009 - Exploring some profiles 
!  Left: expression for 2 genes selected at random. Each symbol represents one 

sample, coloured by cancer type. All cancer types are intermingled. 
!  Right: expression of the 2 genes with the highest sample-wise variance. The 

first gene (CD9) separates cell types T and Bt (low expression) from Bh, Bep, 
Br (high expression). Bo is dispersed over the whole range. 

!  Question: how can we identify a combination of genes that discriminate the 
different subtypes as well as possible ? 

16 

3.5 4.0 4.5 5.0 5.5

4.
5

5.
0

5.
5

6.
0

6.
5

Den Boer (2009), randomly selected genes

CCDC28A|209479_at

TC
F3
|2
15
26
0_
s_
at

T

T

T

T

T
T

T

TT

TT

T

T

T

T

T

T T
T

T

T
T

T

T

TT
T T

T

T

T

T

T

T

T

T

Bt

Bt

Bt

Bt

Bt

Bt
Bt

Bt

Bt

Bt

Bt

Bt

Bt

Bt

Bt Bt

Bt

Bt

Bt
Bt

Bt

Bt
Bt

Bt

BtBt

Bt

Bt

Bt
BtBt

Bt
Bt

Bt
Bt

Bt

Bt
Bt

Bt

Bt

Bt

Bt

Bt

Bth

Bh

Bh

Bh

Bh

Bh

Bh
Bh

Bh

Bh

Bh

Bh

Bh
Bh

Bh
Bh

Bh

Bh

Bh
BhBh Bh

Bh
Bh

Bh

Bh

Bh

Bh

Bh

Bh

Bh

Bh
Bh
Bh

Bh

Bh Bh

Bh

Bh

Bh

BhBh

Bh

BhBh
BEBEp

BEp
BEp

BEp

BEp

BEp

BEp

BEp

BEs

BEs

BEs

BEs

Bc

Bc

Bc

Bc

Bch
BM

BM

BM

BM

Bo

Bo

BoBo

Bo

Bo

Bo

Bo
Bo

Bo

Bo

Bo

Bo

Bo

Bo

Bo
Bo

BoBo

BoBo

Bo
Bo

Bo

Bo

Bo

Bo

Bo

Bo
Bo

Bo

Bo

Bo

Bo
Bo

Bo

Bo

Bo

Bo

Bo

Bo

Bo

Bo
Bo

2 4 6 8

4
6

8
10

12

2 genes with the highest variance

gene CD9|201005_at

ge
ne

 IL
23

A|
21

17
96

_s
_a

t

T

T

T
T

T
T

T

T

T

T
T

T

T

T

T

T

TT
T

T

T

T

T
T T

T T

T

T

T

T

T
T

T

T

T

BtBt
Bt

Bt
Bt

Bt Bt

Bt

BtBt
Bt

Bt
Bt

Bt Bt

Bt

Bt
Bt

Bt

Bt

Bt
Bt

Bt

Bt

Bt Bt

BtBt

Bt
Bt

BtBtBt

Bt

Bt Bt

Bt

Bt

Bt
Bt

Bt

Bt

Bt

Bth
Bh

Bh

Bh
Bh

Bh

Bh

Bh

BhBh
Bh

Bh
Bh

Bh

Bh

Bh

Bh

Bh

BhBh
Bh

Bh

Bh

Bh
Bh

Bh

Bh

Bh

Bh
Bh

Bh

BhBh
Bh

BhBh

Bh

Bh

Bh

Bh

Bh
BhBh

Bh

Bh
BE

BEp
BEp

BEpBEp

BEp

BEp

BEp BEpBEs

BEs

BEsBEs

Bc

Bc

Bc

Bc
Bch

BM

BM
BM BM

Bo

Bo

Bo

Bo
Bo

Bo

Bo

Bo

BoBo

Bo

Bo

Bo

Bo

Bo
BoBo

Bo

Bo Bo

Bo

Bo Bo

Bo
Bo Bo

Bo

Bo
Bo

Bo
Bo

Bo

Bo

Bo

Bo

Bo

Bo

Bo

Bo
Bo

BoBo

Bo

Bo



Discriminant analysis :  
methodological principles 

Statistical Analysis of Microarray Data 



Multivariate data with a nominal criterion variable 

!  One disposes of a set of objects (the sample) which have been 
previously assigned to predefined classes.  

!  Each object is characterized by a series of quantitative variables (the 
predictors), and its class is indicated in a separated column (the 
criterion variable). 
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Criterion variable
variable 1 variable 2 ... variable p class

object 1 x1,1 x2,1 ... xp,1 A

object 2 x1,2 x2,2 ... xp,2 A

object 3 x1,3 x2,3 ... xp,3 A
... ... ... ... ... ...
object i x1,i x2,i ... xp,i B

object i+1 x1,i+1 x2,i+1 ... xp,i+1 B

object i+2 x1,i+2 x2,i+2 ... xp,i+2 B
... ... ...
object n-1 x1,n-1 x2,n-1 ... xp,n-1 K

object n x1,n x2,n ... xp,n K

Predictor variables



Discriminant analysis - training and prediction 
!  Training phase 

"  The sample is used to build a discriminant function. 
!  Testing phase 

"  The quality of the discriminant function is evaluated on an independent data set. 
!  Prediction phase 

"  The discriminant function is used to predict the value of the criterion variable for new 
objects. 
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Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 A

object 2 x12 x22 ... xp2 A

object 3 x13 x23 ... xp3 B
... ... ... ... ... ...
object ntrain x1n x2n ... xpn K

Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 ?

object 2 x12 x22 ... xp2 ?

object 3 x13 x23 ... xp3 ?
... ... ... ... ... ...
object npred x1n x2n ... xpn ?

Predictor variables

Predictor variables



Objects of 
known class 

Discriminant analysis 
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Training set 

Calibration 

Discriminant  
function 

Testing set 

Prediction Predicted class Confusion table 
(for evaluation) Comparison 

Objects of  
unknown class 

Prediction Predicted class 



Conceptual illustration with a single predictor variable 

!  Given two predefined classes (A and B), try intuitively to assign a class to each new object 
(X positions denoted by vertical black bars). 

!  How confident do you feel for each of your predictions ? 
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!  What is the effect 
of the respective 
means ? 

!  What is the effect 
of the respective 
standard 
deviations ? 

!  What is the effect 
of the population 
sizes ? 



Conceptual illustration with a single variable 

!  In this conceptual example, the two 
populations have the same mean and 
variance.  

!  To which group (A or B) would you 
assign the points at coordinate x, y, z, t, 
respectively  ?  
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Conceptual illustration with a single variable 

!  Same exercise.  
!  This example shows that the 

assignation is affected by the position of 
the group centres.  
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Conceptual illustration with a single variable 

!  Same exercise.  
!  When the centres become too close, 

some uncertainty is attached to some 
points (y, but also partly z).  

!  There is thus an effect of group 
distance. 
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Conceptual illustration with a single variable 

!  Same exercise.  
!  The centres are in the same position as 

in the first example, but the variance is 
larger.  

!  This affects the level of separation of 
the groups, and raises some uncertainty 
about the group membership of z. 

!  The group variance thus affects the 
assignation.  
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Conceptual illustration with a single variable 

!  Same exercise. 
!  This illustrates the effect of  the sample 

size: if a sample has a much larger size 
than another one, it will increase the 
likelihood that some observations were 
issued from this group.  
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Conceptual illustration with a single variable 

! Same exercise. 
! This is the symmetric 

situation of the preceding 
figure.  

! Although the group centres 
and variances are identical, 
the change of sample sizes 
completely modifies the 
group assignations. 

! This is an effect of prior 
probability.   
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Conceptual illustration with a single variable 

! Same exercise. 
!  If the two groups have 

different dispersions, it will 
affect their likelihood to be 
the originators of some 
observations.  

! The relative dispersion of 
the groups affects the 
assignation.  
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Conceptual illustration with a single variable 

! Same exercise. 
! Symmetrical situation of the 

preceding one: same 
centres, same sample 
sizes, but the relative 
variances vary in the 
opposite way.   

! The relative dispersion of 
the groups affects the 
assignation.  
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Conceptual illustration with a single variable 

!  Same exercise. 
!  When the dispersion of one 

group becomes too high, a 
simple boundary is not 
sufficient anymore to separate 
the two groups. 

!  In this example, we would 
classify the leftmost (x) and 
rightmost (t, and maybe z) 
objects as B, and the central 
ones (y) as A. ` 

!  We need thus two boundaries 
to separate these groups.  

!  The relative dispersion of the 
groups affects the assignation.  
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Conceptual illustration with a single variable 

!  Same exercise. 
!  Symmetrical situation of the 

preceding figure.  
!  The relative dispersion of the 

groups affects the assignation.  
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Conceptual illustration with two predictor variables 
!  Given two predefined classes (A and B), try intuitively to assign a class to each new object 

(black dots). 
!  How confident do you feel for each of your predictions ? 
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!  What is the effect 
of the respective 
means ? 

!  What is the effect 
of the respective 
standard 
deviations ? 

!  What is the effect 
of the 
correlations 
between the two 
variables ? 

!  Note that the two 
population can 
have distinct 
correlations 
(orientations of 
the clouds) 



Conceptual illustration with two variable 

!  The same concepts can be 
illustrated in a two-dimensional 
feature space.  

!  Some additional concepts will 
appear. 

!  Try to assign intuitively the 
points 1 to 6 to either group A 
or group B.  
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Conceptual illustration with two variable 

!  Effect of the group centre 
location.  

34 



Conceptual illustration with two variable 

!  Effect of the group variance.  
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Conceptual illustration with two variable 

!  Effect of the group variance.  
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Conceptual illustration with two variable 

!  Effect of the relative 
variances.  
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Conceptual illustration with two variable 

!  Effect of the relative 
variances.  
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Conceptual illustration with two variable 

!  Effect of the covariance. 
between columns of the group.  
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Conceptual illustration with two variable 

!  Effect of the covariance. 
between columns of the group.  
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Conceptual illustration with two variable 

!  Effect of the relative 
covariance. between columns 
of the group. 

!  The two groups have now 
different covariance matrices: 
the clouds are elongated in 
different directions.  

!  This affects group assignments 
(example point 2). 
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Classification rules 

!  New units can be classified on the basis of rules based on the calibration sample 
!  Several alternative rules can be used 

"  Maximum likelihood rule: assign unit u to group g if 

"  Inverse probability rule: assign unit u to group g if 

"  Posterior probability rule: assign unit u to group g if 
 
 

Where 
 X   is the unit vector 
 g,g’  are two groups 
f(X|g)  is the density function of the value X for group g 
P(X|g)  is the probability to emit the value X given the group g 
P(g|X)  is the probability to belong to group g, given the value X 
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€ 

P(X | g) > P(X | g') for g'≠ g

€ 

P(g | X) > P(g' | X) for g'≠ g

€ 

f (X | g) > f (X | g') for g'≠ g



Posterior probability rule 

!  The posterior probability can be obtained by application of Bayes' theorem 
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€ 

P(g | X) =
P(X | g)P(g)

P(X)

€ 

P(g | X) =
P(X | g)π g

P(X | g')π g'
g '=1

k

∑

Where 
"   X  is the unit vector 
"   g  is a group 
"   k  is the number of groups 
"   πg  is the prior probability of group g 



Maximum likelihood rule - multivariate normal case 

!  If the predictor variable is univariate normal 
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!  If the predictor variable is multivariate normal 

Where 
"   X  is the unit vector 
"   p  is the number of variables 
"   µg  is the mean vector for group g 
"   Σg  is the covariance matrix for group g 
 



Bayesian classification in case of normality 

!  Each object is assigned to the group which minimizes the function 
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Linear versus quadratic classification rule 

!  There is one covariance matrix per group g.  
"  This matrix indicates the covariance between each column (variable) of the 

data set, for the considered group. 
"  The diagonals of this matrix represent the variance (=covariance between a 

variable and itself) 
!  When all covariance matrix are assumed to be identical 

"  The classification rule can be simplified to obtain a linear function. This is 
referred to as Linear Discriminant Analysis (LDA) 

"  In this case,the boundary between groups will be a plane (2 variables) or a 
hyper-plane (more than 2 variables). 

!  If the variances and covariances are expected to differ between groups 
"  A specific covariance matrix has to be used for each group. 
"  The boundary between two groups is a curve (with two variables) or a hyper-

surface (more than 2 variables). 
"  This is referred to as Quadratic Discriminant Analysis (QDA) 
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Evaluation of the discriminant function - confusion table 

!  One way to evaluate the accuracy of the discriminant function is to apply it to the sample 
itself. This approach is called internal analysis. 

!  The known and predicted class are then compared for each sample unit. 
!  Warning : internal analysis is too optimistic. This approach is not recommended. 
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variable 1 variable 2 ... variable p known predicted
object 1 x1,1 x2,1 ... xp,1 A A

object 2 x1,2 x2,2 ... xp,2 A B

object 3 x1,3 x2,3 ... xp,3 A A
... ... ... ... ... ... ...
object i x1,i x2,i ... xp,i B K

object i+1 x1,i+1 x2,i+1 ... xp,i+1 B B

object i+2 x1,i+2 x2,i+2 ... xp,i+2 B B
... ... ...
object n-1 x1,n-1 x2,n-1 ... xp,n-1 K K

object n x1,n x2,n ... xp,n K K

Predictor variables Criterion variable



Evaluation of the discriminant function - confusion table 

!  The results of the evaluation are summarized in a confusion table, 
which contains the count of the predicted/known combinations.  

!  The confusion table can be used to calculate the accuracy of the 
predictions. 

48 

PHO MET CTL SUM
PHO 8 0 0 8
MET 0 1 1 2
CTL 5 18 81 104
SUM 13 19 82 114
Errors 24 21.05%
Correct 90 78.95%

P
re

di
ct

ed

Confusion table

Known



Evaluation of the discriminant function - plot 

!  The two first discriminant 
functions can be used as X and 
Y axes for plotting the result.  

!  In the same way as for PCA, X 
and Y axes represent linear 
combinations of variables 

!  However, these combinations 
are not the same as the first 
factors obtained by PCA. 
"  When comparing with PCA 

figure, the PHO genes are 
now all located nearby the X 
axis. 
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External analysis 

!  Using the sample itself for evaluation is problematic, because the evaluation is biased (too 
optimistic). To obtain an independent evaluation, one needs two separate sets : one for 
calibration, and one for evaluation. This approach is called external analysis. 

!  The simplest setting is to split randomly the sample into two sets (holdout approach) : 
"  the training set is used to build a discriminant function 
"  the testing set is used for evaluation 
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Criterion variable
variable 1 variable 2 ... variable p class

object 1 x11 x21 ... xp1 A

object 2 x12 x22 ... xp2 A

object 3 x13 x23 ... xp3 B
... ... ... ... ... ...
object ntrain x1n x2n ... xpn K

variable 1 variable 2 ... variable p known predicted
object 1 x11 x21 ... xp1 A A

object 2 x12 x22 ... xp2 B A

object 3 x13 x23 ... xp3 B B
... ... ... ... ... ... ...
object ntest x1n x2n ... xpn K K

Criterion variable

Predictor variables
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Leave-one-out (LOO) validation 

!  When the sample is too small, it is problematic to loose half of it for 
testing. 

!  In such a case, the leave-one-out (LOO) approach is recommended : 
1.  Discard a single object from the sample. 
2.  With the remaining objects, build a discriminant function. 
3.  Use this discriminant function to predict the class of the discarded object. 
4.  Compare known and predicted class for the discarded object. 
5.  Iterate the above steps with each object of the sample. 
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Profiles after prediction 

! Example:  
"  Gene expression data 
"  Linear discriminant analysis 
"  Leave-one-out cross-validation. 

! Genes predicted as "PHO" have 
generally high levels of response 
(but this is not true for all of them) 

! A very few genes are predicted as 
MET. 

! Most genes predicted as control 
have a low levels of regulation. 
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246810

-4-2 0246
Predicted as PHOYBR093CYDR481CYAR071WYHR215WYML123CYJL117WYBR296CYHR136C246810

-4-2 0246

Predicted as METYDR234WYGR088WYLR263W246810

-4-2 0246

Predicted as CTLYOL001WYGR233CYPL031CYCR037CYBR106WYBR213WYDR253CYDR502CYER091CYFR030WYHL036WYIL046WYIR017CYJR010WYJR137CYKL001CYKR069WYLR180WYLR303WYLR396CYNL241CYNL277W



Analysis of the misclassified units 

!  The sample might itself contain classification errors. The apparent misclassifications can 
actually represent corrections of these labelling errors.  

!  Example : gene expression data - linear discriminant analysis 
All the genes "mis"classified as control have actually a flat expression profile.  

"  Most of them are MET genes (indeed, these are not expected to respond to phosphate) 
"  the 4 PHO genes (blue) have a flat profile 

53 

246810

-4-2 0246Misclassifications - classified as CTLvariable
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YOL001WYGR233CYPL031CYCR037CYBR106WYBR213WYDR253CYDR502CYER091CYFR030WYIL046WYIR017CYJR010WYJR137CYKL001CYKR069WYLR180WYLR303WYLR396CYNL241CYNL277WYOL064CYPL038W



Evaluation with leave-one-out 

!  Leave-one-out is more severe for evaluating the 
accuracy of predictions. 
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Choice of the prior probabilities 

!  The classes may have different proportions between the sample and the 
population 

!  For example, we could decide, on the basis of our biological knowledge, 
that it is likely to have 1% rather than 11% of yeast gene responding to 
phosphate. 
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Class Sample Priors from 
sample

Arbitrary 
priors

PHO 13 659 58
11% 11% 1%

MET 19 964 58
17% 17% 1%

CTL 82 4160 5667
72% 72% 98%

TOTAL 114 5783 5783

Population



Prediction phase 
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Feature selection 
(=variable selection) 
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Feature selection (variable selection) 

!  One approach to circumvent this problem is to select a subset of variables only. 
!  This subset of variables can be selected according to different rules.  

"  Variable ordering: variables are ordered according to some criterion, and the topmost variables 
are retained.  
•  Inter-group distances calculated in each variable separately. This inter-group distance can be 

calculated with the t-test.  
•  P-value of the t-test (the P-value is not always linear with the t statistics, since the number of 

observations can vary from row to row if there are missing values). 
"  Variables combinations 

•  Selection of a subset of variables and estimation of the capability of each subset to classify 
correctly. 

•  The number of possible combinations of variables increases exponentially with the number of 
variables.  

"  Stepwise selection 
•  Stepwise selection is an heuristics to select a subset of variables in a quadratic time, but they 

do not guarantee optimality. 
!  Forward selection 
!  Backward selection 
!  Forward-backward selection 
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Over-fitting 

!  A typical application of supervised 
classification is to classify 
experiments (e.g. patient types) on 
the basis of the expression 
profiles.  

!  In this case, the objects are the 
experiments, and the variables the 
genes.  

!  This raises a problem of over-
fitting: the number of variables is 
much larger than the number of 
objects in the training set.  

!  In such situations, the classifier will 
tend to build a classification rule 
which perfectly fits the training set, 
but fails to generalize to other 
observations.  
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Variable ordering with the t-test 
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Forward stepwise feature selection 
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Leave-one-out cross-validation – 20 genes , top-ranking by variance 

!  Cross-validation of Linear Discriminant Analysis with Den Boer (2009). 
!  Variables: 20 top-ranking probesets sorted by decreasing variances. 
!  Hit rate: proportion of correct predictions 

"  Correct (diagonal): 152 
"  Total: 187 
"  Hit rate: 81.3% 
"  Error rate: 18.7% 
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 ! ! ! !
!loo.predicted.class!

sample.labels Bc BE BEp BEs Bh BM Bo Bt  T!
          Bc   0  0   0   0  0  0  4  0  0!
          Bch  0  0   0   0  0  0  0  0  0!
          BE   0  0   0   0  0  0  0  0  0!
          BEp  0  1   6   0  0  0  1  0  0!
          BEs  0  0   0   3  0  0  1  0  0!
          Bh   0  0   0   1 40  0  3  0  0!
          BM   0  0   0   0  0  3  1  0  0!
          Bo   3  0   2   2  7  1 25  4  0!
          Bt   0  0   2   1  0  0  1 39  0!
          Bth  0  0   0   0  0  0  0  0  0!
          T    0  0   0   0  0  0  0  0 36!



Leave-one-out cross-validation – 20 genes top-ranked by various criteria 

!  Cross-validation of Linear Discriminant Analysis with Den Boer (2009). 
!  Variables: 20 top-ranking probesets sorted by multi-criterion rank (variance + two-

groups Welch tests). 
!  Hit rate: proportion of correct predictions 

"  Correct (diagonal): 164 
"  Total: 187 
"  Hit rate: 87.7% 
"  Error rate: 12.3% 

63 

Bc Bch BE BEp BEs Bh BM Bo Bt Bth T Total

Bc 0 0 0 1 0 0 0 3 0 0 0 4
Bch 0 0 0 0 0 0 0 0 0 0 0 0
BE 0 0 0 0 0 0 0 0 0 0 0 0
BEp 0 0 1 6 1 0 0 0 0 0 0 8
BEs 0 0 0 1 2 0 0 1 0 0 0 4
Bh 0 0 0 0 1 41 0 2 0 0 0 44
BM 0 0 0 0 0 0 2 1 1 0 0 4
Bo 2 1 0 0 1 3 1 34 2 0 0 44
Bt 0 0 0 0 0 0 0 0 43 0 0 43
Bth 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 36 36
Total 2 1 1 8 5 44 3 41 46 0 36 187

Predicted;class

Kn
ow

n;
cl
as
s



Leave-one-out cross-validation – 100 genes top-ranked by various criteria 

!  Cross-validation of Linear Discriminant Analysis with Den Boer (2009). 
!  Variables: 100 top-ranking probesets sorted by multi-criterion rank (variance + two-groups 

Welch tests). 
!  Hit rate: proportion of correct predictions 

"  Correct (diagonal): 168 
"  Total: 187 
"  Hit rate: 89.9% 
"  Error rate: 10.2% 
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 loo.predicted.class!
sample.labels Bc BEp BEs Bh BM Bo Bt  T!
          Bc   0   0   0  2  0  2  0  0!
          Bch  0   0   0  0  0  0  0  0!
          BE   0   0   0  0  0  0  0  0!
          BEp  0   8   0  0  0  0  0  0!
          BEs  0   0   3  0  0  1  0  0!
          Bh   0   0   1 41  0  2  0  0!
          BM   0   0   1  0  2  1  0  0!
          Bo   2   1   0  5  0 35  1  0!
          Bt   0   0   0  0  0  0 43  0!
          Bth  0   0   0  0  0  0  0  0!
          T    0   0   0  0  0  0  0 36!



Leave-one-out cross-validation – 200 genes top-ranked by various criteria 

!  Cross-validation of Linear Discriminant Analysis with Den Boer (2009). 
!  Variables: 200 top-ranking probesets sorted by multi-criterion rank (variance + two-groups 

Welch tests). 
!  Hit rate: proportion of correct predictions 

"  Correct (diagonal): 15 
"  Total: 187 
"  Hit rate: 8% 
"  Error rate: 92% 
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 loo.predicted.class!
sample.labels Bc Bch BE BEp BEs Bh BM Bo Bt Bth T!
          Bc   0   0  0   0   0  1  2  0  1   0 0!
          Bch  0   0  0   0   0  0  0  0  0   0 0!
          BE   0   0  0   0   0  0  0  0  0   0 0!
          BEp  2   2  1   0   1  1  0  0  0   0 1!
          BEs  1   0  1   1   0  0  0  0  0   1 0!
          Bh   4   3  3   4   6  3  5  2  7   2 5!
          BM   0   0  1   0   3  0  0  0  0   0 0!
          Bo   3   4  5   4   2  7  5  3  1   4 6!
          Bt   5   5  5   3   1  3  6  2  3   5 5!
          Bth  0   0  0   0   0  0  0  0  0   0 0!
          T    6   4  2   3   3  2  4  3  1   2 6!



Technical note: approach followed by DenBoer (differs from here) 

!  Multi-groups discrimination with 6 subtypes only (T-ALL, ETV6–
RUNX1-positive, hyperdiploid, E2A- rearranged, BCR–ABL1-positive 
and MLL-rearranged) 

!  Training: 190 cases (COALL) 
!  Inner loop 

"  Three-fold cross-validation: 2/3 cases for training, 1/3 for 
evaluation. 

"  100 iterations 
!  Variable filtering:  

"  for each subtype, selection of the 50 lowest p-values with 
Wilcoxon’s test. 

"  For BCR-ABL1 and MLL, used 40 probesets from another source. 
!  Learning algorithm: radial-kernal support vector machine. 
!  Selection of the least number of probes by backward selection. 
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Summary - discriminant analysis 

!  Discriminant analysis is based on a set of quantitative predictor variables, and a single 
nominal criterion variable. 

!  A sample is used to build a set of discriminant functions (calibration), which is then used to 
assign additional units to classes (prediction).  

!  The discriminant function can be either linear or quadratic. Linear discriminant analysis 
relies on the assumption that the different classes have similar covariance matrices.  

!  The accuracy of the discriminant function can be evaluated in different ways. 
"  On the whole sample (internal approach) 
"  Splitting of the sample into training and testing set (holdout approach) 
"  Successively discard each sample unit, build a discriminant function and predict the discarded unit 

(leave-one-out) 
!  The efficiency decreases with the p/N ratio. When this ratio is too low, there is a problem of 

over-fitting. 
!  Stepwise approaches consist in selecting the subset of variables which raises the highest 

efficiency.  
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KNN classifiers 

Statistical Analysis of Microarray Data 



K nearest neighbours 

!  Discriminant analysis is a global approach to classification: the discriminant rule is 
established in the same way for the whole data space, on the basis of group centres and 
covariance matrices. Discriminant analysis is thus a global classifier.  

!  K nearest neighbour (KNN) classifiers takes a very different approach: at each position of 
the feature space 

"  The K closest neighbour points from the training set are identified; 
"  A vote is established as a function of the relative proportions of the respective training groups in 

this set of neighbours. 
!  KNN is thus a local classifier.  
!  The choice of K drastically affects group assignments.  
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Support Vector Machines 

Statistical Analysis of Microarray Data 



Web resources 

!  Gist 
"  Download   http://microarray.cpmc.columbia.edu/gist/ 
"  Web interface  http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi 
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Old slides 



Training set 

!  There is a subset of objects (in the case below, genes) which can be assigned to 
predefined classes (e.g. “phosphate”, “methionine” or “control”), on the basis of external 
information (e.g. biological knowledge). 

!  These classes will be used as criterion variable. 
!  Note : the sample class labels might contain some errors (misclassified objects).  

73 

# ORF Gene name Family # ORF Gene name Family # ORF Gene name Family
1 YBR093C PHO5 PHO 14 YBR213W MET8 MET 33 YAL038W CDC19 CTL
2 YDR481C PHO8 PHO 15 YDR253C MET32 MET 34 YBL005W PDR3 CTL
3 YAR071W PHO11 PHO 16 YDR502C SAM2 MET 35 YBL005W-A YBL005W-A CTL
4 YHR215W PHO12 PHO 17 YER091C MET6 MET 36 YBL005W-B YBL005W-B CTL
5 YOL001W PHO80 PHO 18 YFR030W MET10 MET 37 YBL030C PET9 CTL
6 YGR233C PHO81 PHO 19 YHL036W MUP3 MET 38 YBR006W UGA5 CTL
7 YML123C PHO84 PHO 20 YIL046W MET30 MET 39 YBR018C GAL7 CTL
8 YPL031C PHO85 PHO 21 YIR017C MET28 MET 40 YBR020W GAL1 CTL
9 YJL117W PHO86 PHO 22 YJR010W MET3 MET 41 YBR115C LYS2 CTL

10 YCR037C PHO87 PHO 23 YJR137C ECM17 MET 42 YBR184W YBR184W CTL
11 YBR106W PHO88 PHO 24 YKL001C MET14 MET 43 YCL018W LEU2 CTL
12 YBR296C PHO89 PHO 25 YKR069W MET1 MET 44 YDL131W LYS21 CTL
13 YHR136C SPL2 PHO 26 YLR180W SAM1 MET 45 YDL182W LYS20 CTL

27 YLR303W MET17 MET 46 YDL205C HEM3 CTL
28 YLR396C VPS33 MET 47 YDL210W UGA4 CTL
29 YNL241C ZWF1 MET 48 YDR011W SNQ2 CTL
30 YNL277W MET2 MET 49 YDR044W HEM13 CTL
31 YOL064C MET22 MET 50 YDR234W LYS4 CTL
32 YPL038W MET31 MET 51 YDR285W ZIP1 CTL

... ... ... ...
112 YPR065W ROX1 CTL
113 YPR138C MEP3 CTL
114 YPR145W ASN1 CTL

Phosphate-responding genes Methionine-responding genes Control genes



2-dimensional visualization of the sample 

!  If there are many variables, PCA 
can be used to visualize the 
sample on the planed formed by 
the two principal components. 

!  Example: gene expression data 
"  MET genes seem 

undistinguishable from CTL genes 
(they are indeed not expected tor 
espond to phosphate) 

"  Most PHO genes are clearly 
distant from the main cloud of 
points. 

"  Some PHO genes are mixed with 
the CTL genes. 
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