Statistical Analysis of Microarray Data

Clustering

Jacques van Helden

Jacques.van-Helden@univ-amu.fr Aix-Marseille Université, France Technological Advances for Genomics and Clinics (TAGC, INSERM Unit U1090) http://jacques.van-helden.perso.luminy.univ-amu.fr/

FORMER ADDRESS (1999-2011) Université Libre de Bruxelles, Belgique Bioinformatique des Génomes et des Réseaux (BiGRe lab) <u>http://www.bigre.ulb.ac.be/</u>

Contents

- Data sets
- Distance and similarity metrics
- K-means clustering
- <u>Hierarchical clustering</u>
- Evaluation of clustering results

Introduction to clustering

- Clustering is an *unsupervised* approach
 - Class discovery: starting from a set of objects, group them into classes, without any prior knowledge of these classes.
- There are many clustering methods
 - hierarchical
 - k-means
 - self-organizing maps (SOM)
 - knn
 - ...
- The results vary drastically depending on
 - clustering method
 - similarity or dissimilarity metric
 - additional parameters specific to each clustering method (e.g. number of centres for the k-mean, agglomeration rule for hierarchical clustering, ...)

Statistical Analysis of Microarray Data

Data sets

Diauxic shift

- DeRisi et al published the first article describing a full-genome monitoring of gene expression data.
- This article reported an experiment called "diauxic shift" with with 7 time points.
- Initially, cells are grown in a glucose-rich medium.
- As time progresses, cells
 - Consume glucose -> when glucose becomes limiting
 - Glycolysis stops
 - Gluconeogenesis is activated to produce glucose
 - Produce by-products -> the culture medium becomes polluted/
 - Stress response

Cell cycle data

- Spellman et al. (1998)
- Time profiles of yeast cells followed during cell cycle.
- Several experiments were regrouped, with various ways of synchronization (elutriation, cdc mutants, ...)
- ~800 genes showing a periodic patterns of expression were selected (by Fourier analysis)

Spellman et al. Comprehensive identification of cell cycle-regulated genes of the yeas Saccharomyces Cerevisiae by Inicidanay hybridization. Nor Biol Cell (1998) vol. 9 (12) pp. 3273-97

Gene expression data – response to environmental changes

 Gasch et al. (2000), 173 chips (stress response, heat shock, drugs, carbon source, ...)

• Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57.

Gene expression data - carbon sources

- Gasch et al. (2000), 173 chips (stress response, heat shock, drugs, carbon source, ...)
- We selected the 13 chips with the response to different carbon sources.

• Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57.

Data standardization and filtering

- For the cell cycle experiments, genes had already been filtered in the original publication. We used the 800 selected genes for the analysis.
- For the diauxic shift and carbon source experiments, each chip contain >6000 genes, most of which are un-regulated.
- Standardization
 - We applied a chip-wise standardization (centring and scaling) with robust estimates (median and IQR) on each chip.
- Filtering
 - Z-scores obtained after standardization were converted
 - to P-value (normal distribution)
 - to E-value (=P-value*N)
 - Only genes with an E-value < 1 were retained for clustering.

Filtering of carbon source data

ORF	ethanol	galactose	glucose	mannose.	raffinose	sucrose	ethanol.vs.ref.pool	fructose.vs.ref.pool	galactose.vs.ref.pool	glucose.vs.ref.pool	mannose.vs.ref.pool	raffinose.vs.ref.pool	sucrose.vs.ref.pool
YAL066W	0.71	-1.87	-1.15	-4.90	-1.85	-3.81	-3.34	-0.96	-3.41	-1.04	0.36	-1.55	-0.87
YAR008W	-2.70	0.36	0.03	-4.90	-0.94	-0.53	0.64	-0.53	-2.57	-0.73	0.38	-1.75	-0.55
YAR071W	-5.43	-1.22	2.73	-0.44	-0.24	3.24	-6.69	1.10	-5.21	1.39	-0.70	0.22	2.94
YBL005W	1.40	3.05	3.97	4.92	1.18	5.52	-0.53	0.79	-0.84	-1.00	1.12	-2.26	1.23
YBL015W	4.00	0.28	-3.46	-3.65	-2.38	-4.94	3.26	-4.64	0.59	-3.76	-1.62	1.08	-5.37
YBL043W	3.91	-1.16	-4.89	-4.90	-1.61	-4.76	4.47	-6.97	-0.61	-6.67	-7.12	0.78	-9.73
YBR018C	-9.68	5.53	-8.66	-11.19	-13.49	-10.23	-9.81	-15.15	6.32	-10.89	-13.01	-12.10	-13.73
YBR019C	-9.68	6.16	-7.77	-11.19	-12.09	-9.17	-9.42	-12.93	6.07	-10.58	-10.90	-9.08	-11.97
YBR020W	-9.68	6.05	-8.66	-11.19	-13.49	-10.23	-10.04	-12.70	6.83	-12.82	-13.01	-8.95	-14.94
										}		 	

Statistical Analysis of Microarray Data

Hierarchical clustering

Hierarchical clustering of expression profiles

- In 1998, Eisen et al.
 - Implemented a software tool called *Cluster*, which combine hierarchical clustering and heatmap visualization.
 - Applied it to extract clusters of coexpressed genes from various types of expression profiles.

Eisen et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A (1998) vol. 95 (25) pp. 14863-8

Clustering with gene expression data

Hierarchical clustering on gene expression data

	YAL066W	YAR008W	YAR071W	YBL005W	YBL015W	YBL043W	YBR018C	YBR019C	YBR020W	YBR054W	
YAL066W	0.00	6.82	12.99	16.33	11.64	17.39	36.41	32.52	36.07	12.00	
YAR008W	6.82	0.00	11.70	13.69	12.58	18.18	37.51	33.46	37.18	12.36	
YAR071W	12.99	11.70	0.00	13.32	21.77	26.62	42.48	38.48	42.15	21.09	
YBL005W	16.33	13.69	13.32	0.00	19.52	25.04	44.95	41.16	44.62	17.86	
YBL015W	11.64	12.58	21.77	19.52	0.00	8.51	34.47	30.79	33.77	6.46	
YBL043W	17.39	18.18	26.62	25.04	8.51	0.00	31.74	28.64	30.90	11.13	
YBR018C	36.41	37.51	42.48	44.95	34.47	31.74	0.00	5.12	4.66	35.84	
YBR019C	32.52	33.46	38.48	41.16	30.79	28.64	5.12	0.00	4.81	32.58	
YBR020W	36.07	37.18	42.15	44.62	33.77	30.90	4.66	4.81	0.00	35.63	
YBR054W	12.00	12.36	21.09	17.86	6.46	11.13	35.84	32.58	35.63	0.00	

Hierarchical clustering on gene expression data

Principle of tree building

	anc				
	object 1	object 2	object 3	object 4	object 5
object 1	0.00	4.00	6.00	3.50	1.00
object 2	4.00	0.00	6.00	2.00	4.50
object 3	6.00	6.00	0.00	5.50	6.50
object 4	3.50	2.00	5.50	0.00	4.00
object 5	1.00	4.50	6.50	4.00	0.00

Distance matrix

Tree representation

- Hierarchical clustering is an aggregative clustering method
 - takes as input a distance matrix
 - progressively regroups the closest objects/ groups
- One needs to define a (dis)similarity metric between two groups. There are several possibilities
 - Average linkage: the average distance between objects from groups A and B
 - Single linkage: the distance between the closest objects from groups A and B
 - **Complete linkage**: the distance between the most distant objects from groups A and B
 - Algorithm
 - (1) Assign each object to a separate cluster.
 - (2) Find the pair of clusters with the shortest distance, and regroup them in a single cluster
 - (3) Repeat (2) until there is a single cluster
- The result is a tree, whose intermediate nodes represent clusters
 - N objects \rightarrow N-1 intermediate nodes
- Branch lengths represent distances between clusters

Isomorphism on a tree

- In a tree, the two children of any branch node can be swapped. The result is an *isomorphic tree*, considered as equivalent to the intial one.
- The two trees shown here are equivalent, however
 - Top tree: leaf 1 is far away from leaf 2
 - Bottom tree: leaf 1 is neighbour from leaf 2
- The vertical distance between two nodes does NOT reflect their actual distance !
- The distance between two nodes is the *sum of branch lengths*.

Hierarchical clustering on gene expression data

Impact of the agglomeration rule

The choice of the agglomeration rule has a strong impact on the structure of a tree resulting from hierarchical clustering.

Those four trees were built from the same distance matrix, using 4 different agglomeration rules.

- The clustering order is completely different.
- Single-linkage typically creates nesting clusters ("Matryoshka dolls").
- Complete and Ward linkage create more balanced trees.
 - **Note:** the matrix was computed from a matrix of random numbers. The subjective impression of structure are thus complete artifacts.

Golub 1999 - Impact of the linkage method (Euclidian distance for all the trees)

Golub 1999 - Effect of the distance metrics (complete linkage for all the trees)

hciust (*, "complete")

golub ; complete linkage ; Dot product

hciust (^x, "complete")

golub ; complete linkage ; Correlation

Golub 1999 - Gene clustering

 Gene clustering highlights groups of genes with similar expression profiles.

Golub, gene clusters (38 samples, 367 probes)

Golub 1999 - Ward Biclustering - Euclidian distance

- Biclustering consists in clustering the rows (genes) and the columns (samples) of the data set.
- This reveals some subgroups of samples.
- With the golub 1999 data set
 - The AML and ALL patients are clearly separated at the top level of the tree
 - There are apparently two clusters among the AML samples.

Golub 1999 - Ward Biclustering - Dot product distance

- Biclustering consists in clustering the rows (genes) and the columns (samples) of the data set.
- This reveals some subgroups of samples.
- With the golub 1999 data set
 - The AML and ALL patients are clearly separated at the top level of the tree
 - There are apparently two clusters among the ALL samples. Actually these two clusters correspond to distinct cell subtypes: T and B cells, respectively.

Impact of distance metrics and agglomeration rules

Golub 1999 - Pruning the tree

hclust (*, "ward")

Impact of the linkage method

Impact of the distance metric - complete linkage

Ipact of the distance metric - single linkage

Pruning and cutting the tree

- The tree can be cut at level k (starting from the root), which creates k clusters
- A k-group partitioning is obtained by collecting the leaves below each branch of the pruned tree

Den Boer 2009 – Hierarchical clustering

Statistical Analysis of Microarray Data

K-means clustering

Clustering around mobile centres

- The number of centres (k) has to be specified a priori
- Algorithm
 - (1) Arbitrarily select k initial centres
 - (2) Assign each element to the closest centre
 - (3) Re-calculate centres (mean position of the assigned elements)
 - (4) Repeat (2) and (3) until one of the stopping conditions is reached
 - the clusters are the same as in the previous iteration
 - the difference between two iterations is smaller than a specified threshold
 - the max number of iterations has been reached

Mobile centres example - initial conditions

initial conditions

- Two sets of random points are randomly generated
 - 200 points centred on (0,0)
 - 50 points centred on (1,1)
- Two points are randomly chosen as seeds (blue dots)

Mobile centres example - first iteration

iter.max = 1 ; iterations = 1

- Step 1
 - Each dot is assigned to the cluster with the closest centre
 - Centres are recalculated (blue star) on the basis of the new clusters

Mobile centres example - second iteration

iter.max = 2 ; iterations = 2

- At each step,
 - points are re-assigned to clusters
 - centres are recalculated
- Cluster boundaries and centre positions evolve at each iteration

Mobile centres example - after 3 iterations

iter.max = 3 ; iterations = 3

- At each step,
 - points are re-assigned to clusters
 - centres are recalculated
- Cluster boundaries and centre positions evolve at each iteration

Mobile centres example - after 4 iterations

iter.max = 4 ; iterations = 4

- At each step,
 - points are re-assigned to clusters
 - centres are recalculated
- Cluster boundaries and centre positions evolve at each iteration

Mobile centres example - after 5 iterations

iter.max = 5 ; iterations = 5

- At each step,
 - points are re-assigned to clusters
 - centres are recalculated
- Cluster boundaries and centre positions evolve at each iteration

Mobile centres example - after 6 iterations

iter.max = 6 ; iterations = 6

- At each step,
 - points are re-assigned to clusters
 - centres are recalculated
- Cluster boundaries and centre positions evolve at each iteration

Mobile centres example - after 10 iterations

 After some iterations (6 in this case), the clusters and centres do not change anymore

Mobile centres example - random data

K-means clustering

- K-means clustering is a variant of clustering around mobile centres
- After each assignation of an element to a centre, the position of this centre is recalculated
- The convergence is much faster than with the basic mobile centre algorithm
 - after 1 iteration, the result might already be stable
- K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects)

Clustering with gene expression data

- Clustering can be performed in two ways
 - Taking genes as objects and conditions/cell types as variables
 - Taking conditions/cell types as objects and genes as variables
- Problem of dimensionality
 - When genes are considered as variables, there are many more variables than objects
 - Generally, only a very small fraction of the genes are regulated (e.g. 30 genes among 6,000)
 - However, all genes will contribute equally to the distance metrics
 - The noise will thus affect the calculated distances between conditions
- Solution
 - Selection of a subset of strongly regulated genes before applying clustering to conditions/cell types

K-means clustering

- K-means clustering is a variant of clustering around mobile centres
- After each assignation of an element to a centre, the position of this centre is recalculated
- The convergence is much faster than with the basic mobile centre algorithm
 - after 1 iteration, the result might already be stable
- K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects)

Diauxic shift: k-means clustering on all genes

Diauxic shift: k-means clustering on filtered genes

Diauxic shift: k-means clustering on permuted filtered genes

Cell cycle data: K-means clustering

Cell cycle data: K-means clustering, permuted data

Carbon sources: K-means clustering

Golub - K-means clustering

K-means clustering - summary

- Strengths
 - Simple to use
 - Fast
 - Can be used with very large data sets
- Weaknesses
 - The choice of the number of groups is arbitrary
 - The results vary depending on the initial positions of centres
 - The R implementation is based on Euclidian distance, no other metrics are proposed
- Solutions
 - Try different values for k and compare the result
 - For each value of k, run repeatedly to sample different initial conditions
- Weakness of the solution
 - Instead of one clustering, you obtain hundreds of different clustering results, totaling thousands of clusters, how to decide among them

Statistical Analysis of Microarray Data

Evaluation of clustering results

How to evaluate the result ?

- It is very hard to make a choice between the multiple possibilities of distance metrics, clustering algorithms and parameters.
- Several criteria can be used to evaluate the clustering results
 - Consensus: using different methods, comparing the results and extracting a consensus
 - Robustness: running the same algorithm multiple times, with different initial conditions
 - Bootstrap
 - Jack-knife
 - Test different initial positions for the k-means
 - Biological relevance: compare the clustering result to functional annotations (functional catalogs, metabolic pathways, ...)

Comparing two clustering results

- If two methods return partitions of the same size, their clusters can be compared in a confusion table
- Optimal correspondences between clusters can be established (permuting columns to maximize the diagonal)
- The consistency between the two classifications can then be estimated with the hit rate
- Example :
 - Carbon source data, comparison of k-means and hierarchical clustering

		k	-mear	<u>ıs clu</u>	sterir	Ŋ		
	k1	k2	k3	k4	k5	k6	k7	Sum
h1	0	0	2	18	14	1	0	35
h2	0	0	0	4	0	0	0	4
h3	0	0	0	0	10	0	0	10
h4	40	0	10	0	0	9	0	59
h5	2	12	0	0	0	5	0	19
h6	0	0	0	0	0	0	4	4
h7	0	2	0	0	0	0	0	2
Sum	42	14	12	22	24	15	4	133

k-means clustering

Correspondence between clusters

hierarchical clustering

hierarchical clustering

hierarchical	h1	h2	h3	h4	h5	h6	h7
k-means	k4	k3	k5	k1	k2	k7	k6
Matches	84		Hit rate		63.2%		
Mismatches 4		9	Error rate			36.8%	

Evaluation of robustness - Bootstrap

- The bootstrap consists in repeating r times (for example r=100) the clustering, using each time
 - Either a different subset of variables
 - Or a different subset of objects
- The subset of variables is selected randomly, with resampling (i.e. the same variable can be present several times, whilst other variables are absent.
- On the images the tree is colored according to the reproducibility of the branches during a 100-iterations bootstrap.

