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Principle of differential analysis

= Two-groups differential analysis with Welch test

o Principle: define a group of interest (“goi”, for example hyperdiploidy), and compare it to all other
cancer subtypes.

o For each gene |, test the null hypothesis of mean equality
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o A priori, we expect that differential expression will cause a difference between group variances ->
we apply Welch rather than Student test.
= Multi-groups differential analysis with ANOVA
o Test the hypothesis of mean equality between all groups.
o For each gene, analyze the variance and compare the inter-group variance with the intra-group
(residual) variance.
= Multiple testing corrections

o The data set from Den Boer (2009) contains 22,283 probes. We are thus challenging 22,283 times
the risk of false positive (considering a gene as significant whereas it is “truly null”).

o Different methods have been proposed to control the number of false positives:

Bonferoni correction : decrease the significance threshold to alpha / N

E-value: compute the expected number of false positives: e-value = p-value * N
FWER: compute P(FP >= 1)

g-value: estimate the false discovery rate (proportion of FP among the genes declared
significant).



Welch test results for two-groups differential analysis

Bh vs others Bo vs others Bt vs others
= 44 samples; 2133 signif probesets 44 samples; 410 signif probesets = “ + 43 samples; 1998 signif probesets
& 1 9
s ® 8 -
g ) )
T R o 2 T e
@ w W ’
8 8 s o
o o D -
S o | k=l k=l
W i i
k=l =l 2 ©
o o o
o (=]
T T ? T
-3 3 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -4 4
Difference between the means Difference between the means Difference between the means
T vs others BEp vs others Bc vs others
o 36 samplgs; 4021 signif probesgts Q -  8samples; 350 signif probesets ® 4 samples, 113 signif probesdis &
@ 7] &
® @ w
g 2 g - - ®
: : s
w w 4
2 g ® =
2 2 g
" ] : 0
2 g 2 k=)
w
(=]
o °
> QADED
' ® T T
-6 3 2 3
Difference between the means Difference between the means Difference between the means
BEs ve others Bh hyperdiploid 44
BM vs others Bo pre-BALL 44
9 4 samples; 210 signif probesets & &
® o 4 samples; 143 signif probesets @ Bt TE L-AM L1 43
® ~ ®
. ®
_ 8 . T T-AL 36
2 . 87
g e E ° L BEp E2A-rearranged (EP) 8
q 7 < e
§. e g . Bc BCR-ABL 4
[ g " BEs E2A-rearranged (E-sub) 4
@ " _
ol - g ° BM MLL 4
. © Bch BCR-ABL + hyperdiploidy 1
o T T
i : e L BE E2A-rearranged (E) 1
-4 . .
Difference between the means Bth TE L'AM L1 + hype rd | p|0|dy 1

Difference between the means 3



Negative controls

= |tis always useful to check empirically the
significance of a selection procedure.

= For this, we can build negative controls, i.e.
datasets where no difference is expected
between groups.

= 3 negative controls

a

Random normal values. We build a fake
expression matrix by generating random
numbers following a normal distribution.
This perfectly fits the working hypotheses
underlying statistical tests (Student,
ANOVA, ...) but is not a very realistic
image of the biological data.

Matrix-wise random permutation of
expression values. The distribution of
values corresponds to the typical
Affymetrix expression sets: left-skewed
distribution.

Permutation of sample labels. We
maintain the structure of the original
expression matrix, but the sample labels
are re-assigned at random. In principle,
the labels are balanced between all the
cancer subtypes, and there should be no
significant difference between the
randomized groups.
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Distribution of P-values from Welch test
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= Original expression matrix. porm labels. welchSP value denboer.welchSP valuo
o Striking over-representation of the
low P-values. This likely
corresponds to differentially
expressed genes.

= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.
Lancet Oncol 10(2): 125-134.



Distribution of P-values from Welch test
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= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.
Lancet Oncol 10(2): 125-134.



