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Principle of differential analysis 

  Two-groups differential analysis with Welch test 
  Principle: define a group of interest (“goi”, for example hyperdiploidy), and compare it to all other 

cancer subtypes. 
  For each gene I, test the null hypothesis of mean equality 

•  H0: mi,goi = mi,others 

•  HA: mi,goi <> mi,others 

  A priori, we expect that differential expression will cause a difference between group variances -> 
we apply Welch rather than Student test.  

  Multi-groups differential analysis with ANOVA 
  Test the hypothesis of mean equality between all groups. 
  For each gene, analyze the variance and compare the inter-group variance with the intra-group 

(residual) variance.  
  Multiple testing corrections 

  The data set from Den Boer (2009) contains 22,283 probes. We are thus challenging 22,283 times 
the risk of false positive (considering a gene as significant whereas it is “truly null”). 

  Different methods have been proposed to control the number of false positives:  
•  Bonferoni correction : decrease the significance threshold to alpha / N 
•  E-value: compute the expected number of false positives: e-value = p-value * N 
•  FWER: compute P(FP >= 1) 
•  q-value: estimate the false discovery rate (proportion of FP among the genes declared 

significant). 
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Welch test results for two-groups differential analysis 
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Negative controls 

  It is always useful to check empirically the 
significance of a selection procedure.  

  For this, we can build negative controls, i.e. 
datasets where no difference is expected 
between groups. 

  3 negative controls 
  Random normal values. We build a fake  

expression matrix by generating random 
numbers following a normal distribution. 
This perfectly fits the working hypotheses 
underlying statistical tests (Student, 
ANOVA, …) but is not a very realistic 
image of the biological data. 

  Matrix-wise random permutation of 
expression values. The distribution of 
values corresponds to the typical 
Affymetrix expression sets: left-skewed 
distribution. 

  Permutation of sample labels. We 
maintain the structure of the original 
expression matrix, but the sample labels 
are re-assigned at random. In principle, 
the labels are balanced between all the 
cancer subtypes, and there should be no 
significant difference between the 
randomized groups.  
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Distribution of P-values from Welch test 

  Data set: Den Boer et al. (2009). 
  Welch test: hyperdiploid versus other 

types of Acute Lymphoblastic Leukemia. 
  P-value distribution 

  Abscissa: frequency class of the 
P-value. 

  Ordinate: number of genes falling 
in this class.  

  3 negative controls 
  Random normal values. 

•  Flat distribution, as 
expected. 

  Matrix-wise random permutation of 
expression values. 
•  Flat distribution, as 

expected. 
  Permutation of sample labels, 

analysis of the original expression 
matrix. 
•  Under-representation of low 

P-values. Strange.  
  Original expression matrix. 

  Striking over-representation of the 
low P-values. This likely 
corresponds to differentially 
expressed genes.  

  Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 



Distribution of P-values from Welch test 

  Data set: Den Boer et al. (2009). 
  Welch test: hyperdiploid versus other 

types of Acute Lymphoblastic Leukemia. 
  Volcano plots 

  Abscissa: difference between the 
means 

  Ordinate: significance of the test.  
  3 negative controls 

  Random normal values. 
•  All significances are 

negative. 
  Matrix-wise random permutation of 

expression values. 
•  7 probesets are slightly 

significant. 
  Permutation of sample labels, 

analysis of the original expression 
matrix. 
•  All significances are 

negative. 
  Original expression matrix. 

  2133 probesets  are declared 
significant (differentially 
expressed) with E-value <= 1. 

  Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 


