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Main objectives of transcriptome 
analysis
● Understand the molecular mechanisms 

underlying gene expression
○  Interplay between regulatory elements and 

expression
■ Create regulatory model

● E.g; to assess the impact of altered variant or epigenetic 
landscape on gene expression

● Classification of samples (e.g tumors)
○ Class discovery
○ Class prediction

Relies on a holistic view of the system



Some players of the RNA world

● Messenger RNA (mRNA)
○ Protein coding
○ Polyadenylated
○ 1-5% of total RNA

● Ribosomal RNA (rRNA)
○ 4 types in eukaryotes (18s, 28s, 5.8s, 5s)
○ 80-90% of total RNA

● Transfert RNA
○ 15% of total RNA



Some players of the RNA world

● miRNA
○ Regulatory RNA (mostly through binding of 3’

UTR target genes )
● SnRNA

○ Uridine-rich
○ Several are related to splicing mechanism
○ Some are found in the nucleolus (snoRNA)

■ Related to rRNA biogenesis
● eRNA

○ Enhancer RNA
● And many others...



Transcriptome: the old school

Cyanine 5 
(Cy5)
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Transcriptome still the old school

● Principle:
○ In situ synthesis of 

oligonucleotides
○ Features

■ Cells: 24µm x 24µm
■ ~107 oligos per cell
■ ~ 4.105-1,5.106 probes



Some pioneering works: 
“Molecular portraits of tumors”



Some pioneering works: Cluster 
analysis to infer gene function



Some pioneering work: tumor 
class prediction 



Even more powerful technology:
RNA-Seq



RNA-Seq: library construction



RNA-Seq: aligned reads (Paired-
end sequencing on Total RNA)

■ Gene: IL2RA



● E.g ENCODE (Encyclopedia Of DNA 
Elements)
○ A catalog of express transcripts

What can we learn from RNA-Seq ?



Some key results of ENCODE 
analysis

● 15 cell lines studied
○ RNA-Seq, CAGE-Seq, RNA-PET
○ Long RNA-Seq (76) vs short (36)
○ Subnuclear compartments

■ chromatin, nucleoplasm and nucleoli

● Human genome coverage by transcripts
○ 62.1% covered by processed transcripts
○ 74.7 % covered by primary transcripts, 
○ Significant reduction of ”intergenic regions”
○ 10–12 expressed isoforms per gene per cell line



The world of long non-coding 
RNA (LncRNA)

● Long: i.e cDNA of at least 200bp 
● A considerable fraction (29%) of lncRNAs are detected in only 

one of the cell lines tested (vs 7% of protein coding)
● 10% expressed in all cell lines  (vs 53% of protein-coding genes)
● More weakly expressed than 

coding genes
● The nucleus is the center of 

accumulation of ncRNAs



● Some results regarding their implication in cancer
● May help recruitment of chromatine modifiers
● May also reveal the underlying activity of enhancers
● A large fraction are divergent transcripts

Some LncRNA are functional



● Fragmentation methods
○ RNA: nebulization, magnesium-catalyzed 

hydrolysis, enzymatic clivage (RNAse III)
○ cDNA: sonication, Dnase I treatment

● Depletion of highly abundant transcripts
○ Ribosomal RNA (rRNA)

■ Positive selection of mRNA . Poly(A) selection.
■ Negative selection. (RiboMinusTM) 

● Select also pre-messenger 

● Strand specificity
● Single-end or Paired-end sequencing 

http://www.bioconductor.org/help/course-materials/2009/EMBLJune09/Talks/RNAseq-Paul.pdf

RNA-Seq: protocol variations



Strand specific RNA-Seq

● Most kits are now strand-specific
○ Better estimation of gene expression level.
○ Better reconstruction of transcript model.



● RNA-seq
○ Counting
○ Absolute abundance of transcripts
○ All transcripts are present and can be analyzed

■ mRNA / ncRNA (snoRNA, linc/lncRNA, eRNA,
miRNA,...)

○ Several types of analyses
■ Gene discovery
■ Gene structure (new transcript models)
■ Differential expression
■ Allele specific gene expression
■ Detection of fusions and other structural 

variations

...

Microarrays vs RNA-Seq



Microarrays vs RNA-Seq



● Microarrays
○ Indirect record of expression level 

(complementary probes)
○ Relative abundance
○ Cross-hybridization
○ Content limited (can only show you what you're 

already looking for)

Microarrays vs RNA-Seq



High reproducibility and dynamic 
range

(a) Comparison of two brain technical replicate RNA-
Seq determinations for all mouse gene models (from 
the UCSC genome database), measured in reads per 
kilobase of exon per million mapped sequence reads 
(RPKM), which is a normalized measure of exonic read 
density; R2 = 0.96. 

(c) Six in vitro–synthesized reference transcripts of 
lengths 0.3–10 kb were added to the liver RNA sample 
(1.2  104 to 1.2  109 transcripts per sample; R2 > 0.99).



RNA-seq vs QPCR

http://bgiamericas.com/wp-content/uploads/2011/12/RNA-Aeq-100-ng-20111209.
pdf



Some RNA-Seq drawbacks

● Current disadvantages
○ More time consuming than any microarray 

technology
○ Some (lots of) data analysis issues

■ Mapping reads to splice junctions
■ Computing accurate transcript models
■ Contribution of high-abundance RNAs (eg 

ribosomal) could dilute the remaining transcript 
population; sequencing depth is important

http://www.bioconductor.org/help/course-materials/2009/EMBLJune09/Talks/RNAseq-Paul.
pdf



Do arrays and RNA-Seq tell a 
consistent story?

● Do arrays and RNA-Seq tell a consistent story?
○ ”The relationship is not quite linear … but the vast majority of the 

expression values are similar between the methods. Scatter 
increases at low expression … as background correction methods 
for arrays are complicated when signal levels approach noise 
levels. Similarly, RNA-Seq is a sampling method and stochastic 
events become a source of error in the quantification of rare 
transcripts ”

○ ”Given the substantial agreement between the two methods, the 
array data in the literature should be durable”

Comparison of array and RNA-Seq data for measuring differential 
gene expression in the heads of male and female D. pseudoobscura



Raw data: the fastq file format
■ Header

■ Sequence

■ + (optional header)

■ Quality (default Sanger-style)

@QSEQ32.249996 HWUSI-EAS1691:3:1:17036:13000#0/1 PF=0 length=36
GGGGGTCATCATCATTTGATCTGGGAAAGGCTACTG
+
=.+5:<<<<>AA?0A>;A*A################
@QSEQ32.249997 HWUSI-EAS1691:3:1:17257:12994#0/1 PF=1 length=36
TGTACAACAACAACCTGAATGGCATACTGGTTGCTG
+
DDDD<BDBDB??BB*DD:D#################



Sanger quality score

● Sanger quality score (Phred quality score): Measure the quality 
of each base call
○ Based on p, the probality of  error (the probability that the 

corresponding base call is incorrect)
○ Qsanger= -10*log10(p)
○ p = 0.01 <=> Qsanger 20 

● Quality score are in ASCII  33 
● Note that SRA has adopted Sanger quality score although 

original  fastq files may use different quality score (see: http:
//en.wikipedia.org/wiki/FASTQ_format)



ASCII 33
● Storing PHRED scores as single characters gave a simple and space 

efficient encoding:
● Character ”!” means a quality of 0
● Range 0-40

            



Quality control for high throughput 
sequence data

● First step of analysis 
○ Quality control
○ Trimming

■ Ensure proper quality of selected reads.
■ The importance of this step depends on the 

aligner used in downstream analysis



Quality control with FastQC

Quality

Position in read

Nb Reads

Mean Phred Score

Position in read

Look also at over-represented sequences



Reference mapping and de novo 
assembly

● Downstream approaches depend on the 
availability of a reference genome
○ If reference : 

■ Align the read to that reference
● Rather straightforward

○ If no reference
■ Perform read assembly (contigs) and compare 

them to known RNA sequences (e.g blast).
● More complex approaches.



Bowtie a very popular aligner

● Burrows Wheeler Transform-based algorithm
● Two phases: “seed and extend”.
● The Burrows-Wheeler Transform of a text T, BWT(T), can be 

constructed as follows. 
○ The character $ is appended to T, where $ is a character not 

in T that is lexicographically less than all characters in T. 
○ The Burrows-Wheeler Matrix of T, BWM(T), is obtained by 

computing the matrix whose rows comprise all cyclic 
rotations of T sorted lexicographically. 

1
2
3
4
5
6
7

acaacg$
caacg$a
aacg$ac
acg$aca
cg$acaa
g$acaac
$acaacg

acaacg$

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

T BWT (T)

gc$aaac

7
3
1
4
2
5
6



● Burrows-Wheeler Matrices have a property called the Last First 
(LF) Mapping. 
○ The ith occurrence of character c in the last column 

corresponds to the same text character as the ith occurrence 
of c in the first column

○ Example: searching ”AAC” in ACAACG

● Second phase is “extension”

Bowtie principle

7
3
1
4
2
5
6



Mappability issues
● Mappability: sequence uniqueness of the reference
● These tracks display the level of sequence uniqueness of the 

reference NCBI36/hg18 genome assembly. They were 
generated using different window sizes, and high signal will be 
found in areas where the sequence is unique.



Mapping read spanning exons

● One limit of bowtie 
○ mapping reads spanning exons

● Solution: splice-aware short-read aligners
○ E.g: tophat



Searching for novel transcript 
model: cufflinks

Read pair

Gapped alignment



Quantification

● Objective
○ Count the number of reads that fall in each gene

■ HTSeq-count, featureCounts,...
● Known issue

○ Positive association between gene counts and 
length
■ suggests higher expression among longer 

genes



RPKM / FPKM
● Transcrits of different length have different read count 

● Tag count is normalized for transcrit length and total read 
number in the measurement (RPKM, Reads Per Kilobase of 
exon model per Million mapped reads)

● 1 RPKM corresponds to approximately one transcript per cell
● FPKM, Fragments Per Kilobase of exon model per Million 

mapped reads (paired-end sequencing)



Some proposed normalization 
methods

● Reads Per Kilobase per Million mapped reads (RPKM): This 
approach was initially introduced to facilitate comparisons between 
genes within a sample.
○ Not sufficient 

● Upper Quartile (UQ):  the total counts are replaced by the upper 
quartile of counts different from 0 in the computation of the 
normalization factors.

● Trimmed Mean of M-values (TMM): This normalization method is 
implemented in the edgeR Bioconductor package (version 2.4.0). 
Scaling is based on a subset of M values
○ TMM seems to provide a robust scaling factor.



Next step ?

● Compare various samples
○ Eg. 

■ control vs treated
■ Normal vs tumor
■ Poor/bad prognosis
■ …

○ Compare expression level, isoforms, fusions,...
● Perform classification
● Compare RNA-Seq data to regulatory 

data (ChIP-Seq,...)



Sequence read Archive (SRA)

● The SRA archives high-throughput sequencing 
data that are associated with:

● RNA-Seq, ChIP-Seq, and epigenomic data that are 
submitted to GEO



SRA growth 



Merci 


