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Main objectives of transcriptome
analysis

e Understand the molecular mechanisms
underlying gene expression

o Interplay between regulatory elements and

expression
m Create regulatory model

e E.g; to assess the impact of altered variant or epigenetic
landscape on gene expression

e C(Classification of samples (e.g tumors)
o Class discovery
o Class prediction

Reliec on a holictic view of the svetem



Some players of the RNA world

e Messenger RNA (mRNA)

o Protein coding
o Polyadenylated
o 1-5% of total RNA

e Ribosomal RNA (rRNA)

o 4 types in eukaryotes (18s, 28s, 5.8s, 5s)
o 80-90% of total RNA

e [ransfert RNA
o 15% of total RNA



Some players of the RNA world

MIRNA

o Regulatory RNA (mostly through binding of 3’
UTR target genes )

SNRNA

o Uridine-rich

o Several are related to splicing mechanism

o Some are found in the nucleolus (snoRNA)
m Related to rRNA biogenesis

eRNA
o Enhancer RNA

And many others...



Transcriptome: the old school
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Science. 1995 Oct 20;270(5235):467-70.

Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Schena M, Shalon D, Davis RW, Brown PO.




Transcriptome still the old school

e Principle:

o In situ synthesis of
oligonucleotides
o Features
m Cells: 24um x 24um
m ~107 oligos per cell
m ~4.10°-1,5.10° probes

\ g



ome pioneering works:
“Molecular portraits of tumors”™
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Nature. 2000 Feb 3;403(6769):503-11.

Distinct types of diffuse large B-cell ymphoma identified by gene expression profiling.
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos |S, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T,
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Some pioneering works: Cluster
analysis to infer gene function
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Some pioneering work: tumor
class prediction

Science. 1993 Oct 15,286(5439):531-7.

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Golub TR!, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Caoller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES.

+ Author information

Abstract

Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class
discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression
monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically
discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these
classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of
cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes for
other types of cancer, independent of previous biological knowledge.
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Even more powerful technology:

RNA-Seq

Nature Methods - 5, 585 - 587 {2008)

doi:10.1038/nmeth0708-585

The beginning of the end for microarrays?

Jay Shendure

Jay Shendure is in the Department of Genome Sciences, University of Washington, Seattle,
Washington 98195, USA. shendure@u. washington.edu

Two complementary appr
successfully tackled the s
once revealing unprecede

Published online 15 October 2008 | Nature 455, 847 (2008) |
doi:10.1038/455847a

News

The death of microarrays?

High-throughput gene sequencing seems to be stealing a march
on microarrays. Heidi Ledford looks at a genome technology
facing intense competition.

Heidi Ledford




RNA-Seq: library construction

a Data generation
{I) mRNA or toral RNA
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RNA-Seq: aligned reads (Paired-
end sequencing on Total RNA)
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What can we learn from RNA-Seq ?

e E.g ENCODE (Encyclopedia Of DNA

Elements)
o A catalog of express transcripts
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Some key results of ENCODE
analysis

e 15 cell lines studied
o RNA-Seq, CAGE-Seq, RNA-PET
o Long RNA-Seq (76) vs short (36)
o Subnuclear compartments

m chromatin, nucleoplasm and nucleoli

e Human genome coverage by transcripts
o 62.1% covered by processed transcripts
o [4.7 % covered by primary transcripts,
o Significant reduction of "intergenic regions”
o 10-12 expressed isoforms per gene per cell line




The world of long non-coding
RNA (LhcRNA)

Long: i.e cDNA of at least 200bp

A considerable fraction (29%) of IncRNAs are detected in only
one of the cell lines tested (vs 7% of protein coding)

10% expressed in all cell lines (vs 53% of protein-coding genes)

More weakly expressed than
. Statistics about the current GENCODE freeze (version 21)
COd I n g g e n eS Statistics of previous GENCODE freezes are found archived here.

* The statistics derive from the gtf file ¥ that contains only the annotation of the main chromosomes.

Th e n u CI e u S iS th e Ce nte r Of For details about the calculation of these statistics please see the README_stats.txt # file.
accumu Iatlon Of ncRNAS Version 21 (June 2014 freeze, GRCh38) - Ensembl 77

General stats

Total No of Genes 60155
19881
15877
Small non-coding RNA genes 9534
Pseudogenes 14467
processed pseudogenes: 10753
- unprocessed pseudogenes: 3230
unitary pseudogenes: 170
- polymorphic pseudogenes: 59
- pseudogenes: 29

Immunoglobulin/T-cell receptor gene segments
- protein coding segments: 395

- pseudogenes: 226



Some LncRNA are functional

Some results regarding their implication in cancer
May help recruitment of chromatine modifiers

May also reveal the underlying activity of enhancers
A large fraction are divergent transcripts
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RNA-Seq: protocol variations

e Fragmentation methods

o RNA: nebulization, magnesium-catalyzed

hydrolysis, enzymatic clivage (RNAse lll)
o cDNA: sonication, Dnase | treatment

e Depletion of highly abundant transcripts

o Ribosomal RNA (rRNA)
m Positive selection of mMRNA . Poly(A) selection.

m Negative selection. (RiboMinus™)
e Select also pre-messenger

e Strand specificity
e Single-end or Paired-end sequencing

http://www.bioconductor.org/help/course-materials/2009/EMBLJune09/Talks/RNAseq-Paul.pdf



Strand specific RNA-Seq

e Most kits are now strand-specific

o Better estimation of gene expression level.
o Better reconstruction of transcript model.




Microarrays vs RNA-Seq

e RNA-seg

o Counting
o Absolute abundance of transcripts
o All transcripts are present and can be analyzed

MRNA / ncRNA (snoRNA, linc/IncRNA, eRNA,
MiRNA,...)

o Several types of analyses

Gene discovery

Gene structure (new transcript models)
Differential expression

Allele specific gene expression

Detection of fusions and other structural
variations



Microarrays vs RNA-Seq
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Microarrays vs RNA-Seq

e Microarrays

o Indirect record of expression level
(complementary probes)

o Relative abundance

o Cross-hybridization

o Content limited (can only show you what you're
already looking for)



High reproducibility and dynamic
range
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(@) Comparison of two brain technical replicate RNA-
Seq determinations for all mouse gene models (from
the UCSC genome database), measured in reads per
kilobase of exon per million mapped sequence reads
(RPKM), which is a normalized measure of exonic read
density; R? = 0.96.

(c) Six in vitro—synthesized reference transcripts of
lengths 0.3—10 kb were added to the liver RNA sample
(1.2 104 to 1.2 109 transcripts per sample; R2 > 0.99).

Nature Methods - 5, 621 - 628 (2008)
Published online: 30 May 2008; | doi:10.1038/nmeth.1226

Mapping and quantifying mammalian transcriptomes by
RNA-Seq

Ali Mortazavil: 2, Brian A Williams!- 2, Kenneth McCue?, Lorian Schaeffer! & Barbara Wold?!



RNA-seq vs QPCR
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Some RNA-Seq drawbacks

e Current disadvantages

o More time consuming than any microarray

technology
o Some (lots of) data analysis issues
m Mapping reads to splice junctions
m Computing accurate transcript models

m Contribution of high-abundance RNAs (eg

ribosomal) could dilute the remaining transcript
population; sequencing depth is important

http://www.bioconductor.org/help/course-materials/2009/EMBL June09/Talks/RNAseqg-Paul.




Do arrays and RNA-Seq tell a
consistent story?

e Do arrays and RNA-Seq tell a consistent story?

o "The relationship is not quite linear ... but the vast majority of the
expression values are similar between the methods. Scatter
increases at low expression ... as background correction methods
for arrays are complicated when signal levels approach noise
levels. Similarly, RNA-Seq is a sampling method and stochastic
events become a source of error in the quantification of rare
transcripts ”

o "Given the substantial agreement between the two methods, the
array data in the literature should be durable”

Females Males F - M Array vs. F-M Seq

Microarray Intensity (log2)
Microarray ratio (log2) I

U--
2 .
-
- %ﬁ:
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- »
;

Microarrays, deep sequencing and the true measure of the y BEL , B [ , ‘C

transcriptome mRNA-Se ; 4 =2 0 2 & & 8
-Seq Read Density (log2)

nnnnnnnnnnn = and Brian Oliver = MRNA-Seq ratio (log2)

Institutes of Health, Bethesda, MD 20892, USA = >
I ® Female-biased expression
B4 author email 2 corres| ponding author email

® Male-biased expression
BMC Biology 2011, 9:34  doi:10.1186/1741-7007-9-34

@® No-sex-bias expression

Comparison of array and RNA-Seq data for measuring differential
gene expression in the heads of male and female D. pseudoobscura



Raw data: the fastq file format

s Header
s Sequence
s + (optional header)

s Quality (default Sanger-style)

@QSEQ32.249996 HWUSI-EAS1691:3:1:17036:13000#0/1 PF=0 length=36
GGGGGTCATCATCATTTGATCTGGGAAAGGCTACTG

+

= .+ 5 <<K<K<>ARARO0RA>; A*AHHHHHHHHFHHHFHEH

@QSEQ32.249997 HWUSI-EAS1691:3:1:17257:12994#0/1 PF=1 length=36
TGTACAACAACAACCTGAATGGCATACTGGTTGCTG

+

DDDD<BDBDB??BB*DD: D#t ## # # ### # 4 # # ##H# 4



Sanger quality score

e Sanger quality score (Phred quality score): Measure the quality
of each base call
o Based on p, the probality of error (the probability that the

corresponding base call is incorrect)

o Qsanger=-10*log10(p)
o p=0.01 <=>Qsanger 20

e Quality score are in ASCII 33

e Note that SRA has adopted Sanger quality score although
original fastq files may use different quality score (see: http:
/[len.wikipedia.org/wiki/FASTQ_format)



ASCII 33

e Storing PHRED scores as single characters gave a simple and space
efficient encoding:
e Character ”!” means a quality of O

. Ra n g e 0-4 O Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
o oo kul 32 20 Space 64 40 @ 96 50
1 01 Start of heading 33 21 ! 55 41 A a7 561 =a
z 0z  Start of text e ot 65 42 B 95 562 b
3 03 End of text 35 R R 7 6577 TS T 99 63 o
4 04 End of transmit 36 24 5 65 S gl 100 54 d
5 05 Enguiry 377 SR 55 SN E 101 55 e
6 06 Acknowledge 35 26 & YO0 46 F 10z 6o £
707 Audible bell 35 S ' 71 B 103 67 o
g 05 Backspace 40 25 I 72 45 H 104 565 h
9 09 Horizontal tak -1 SRS | 73 g T 105 FEE i
10 0OA Line feed 4z S 714 4A J 106 [=F-
11 OB ‘“erticaltab 43 2B + 75 T ia7 5B k
1z 0OZ  Form feed g SRR 76 4C L 105 6C 1
13 Ol Carriage return 35 ERTU. — i 4D M 102 el m
14 OE  Shift out 45 ZE 7 7a 4E I 110 EE n
15 0OF Shiftin 77 ST 79 4F © 111 6F o
16 10  Data link escape 45 30 0O 50 S50 P 11z YO
17 11 Device contral 1 49 31 1 g1 51 Q 113 71 g
15 12  Device control 2 50 RS 8z was R 114 72 r
19 13 Device control 3 51 S =R SR 115 R =
20 14 Device control 4 5z SR 1 OO R T 115 S 1
21 15 HMeg. acknowledge 53 S R 85 55 1O 117 75 u
22 16  Synchronous idle 54 36 & 86 56 WV i11a8 76w
23 17 Endtrans. block 55 S T 87 57 W 119 77 w
24 18 Cancel 56 38 & =R 58 X 120 78 =
25 19  End of medium 577 T T SR=k o N 121 BEEEIR
26 14  Substitution 55 JA 90 ESA Z 122 7A =
27 1E Ezcape 50 SRR =hN [ 123 7B |
25 1C  File separator 50 3C < oz G 12 |
29 1D Group separator =9 AT = a3 ED ] 1z5 7D +
30 1E FRecord separstor 62 ECE - o4 S 126 I
31 1F  Unit separator 53 S T =E=f o 1277 BT [




Quality control for high throughput

sequence data

e First step of analysis

o Quality control
o Trimming

m Ensure proper quality of selected reads.
m The importance of this step depends on the

aligner used in downstream analysis
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Quality control with FastQC

S|

5555555

nnnnnn

Position in read

Mean Phred Score

Position in read

\ Look also at over-represented sequences



Reference mapping and de novo
assembly

e Downstream approaches depend on the

availability of a reference genome
o If reference :

m Align the read to that reference
e Rather straightforward

o If no reference

m Perform read assembly (contigs) and compare

them to known RNA sequences (e.g blast).
e More complex approaches.



Bowtie a very popular aligner =@

e Burrows Wheeler Transform-based algorithm
e Two phases: “seed and extend”.
e The Burrows-Wheeler Transform of a text T, BWT(T), can be

constructed as follows.

o The character $ is appended to T, where $ is a character not
In T that is lexicographically less than all characters in T.

o The Burrows-Wheeler Matrix of T, BWM(T), is obtained by
computing the matrix whose rows comprise all cyclic
rotations of T sorted lexicographically.

T

acaacg$ —

acaacg$
caacg$a
aacg$ac
acg$aca
cg$acaa
gSacaac
Sacaacg

Soordkd WK

Sacaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
gS$acaac

OO NN AR WJ

BWT (T)

— gc$aaac



Bowtie principle

e Burrows-Wheeler Matrices have a property called the Last First

(LF) Mapping.

o The ith occurrence of character c in the last column
corresponds to the same text character as the ith occurrence
of ¢ in the first column

o Example: searching "AAC” in ACAACG

aac aac aac
(a) Sacaacg (c)

aacgSac

acaacgs
acaacg$—+acgSaca—+gcSaaac

caacgSa ~»>

cgSacaa

gSacaac -

vV

o O o
O O
o OO0 o o D e

O D DO Lo

O O
O OO e 0w

D O O eSO
SOOI EFE W

e Second phase is “extension”



Mappability issues

e Mappability: sequence uniqueness of the reference

e These tracks display the level of sequence uniqueness of the
reference NCBI36/hg18 genome assembly. They were
generated using different window sizes, and high signal will be
found in areas where the sequence is unique.
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Mapping read spanning exons

e One limit of bowtie
o mapping reads spanning exons

e Solution: splice-aware short-read aligners
o E.g: tophat
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Searching for novel transcript
model: cufflinks
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Quantification

Length

. 1 10 10000
. O bj e Ct i Ve (a) Count vs. length

o Count the number of reads that fall in each gene
m HTSeqg-count, featureCounts,...

e Known issue

o Positive association between gene counts and
length

m suggests higher expression among longer
genes




RPKM / FPKM

e Transcrits of different length have different read count

1. 2B e S
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e Tag countis normalized for transcrit length and total read
number in the measurement (RPKM, Reads Per Kilobase of
exon model per Million mapped reads)

e 1 RPKM corresponds to approximately one transcript per cell

e FPKM, Fragments Per Kilobase of exon model per Million
mapped reads (paired-end sequencing)

Accurate quantification of transcriptome =1
. - from RNA-Seq data by effective length
Computational methods for transcriptome normalizaﬁm? a Bt
annotation and quantification using RNA-seq

Manuel Garber!, Manfred G Grabherr!, Mitchell Guttman'-2 & Cole Trapnelll‘3

ae Hwa Seol, Byungho Limz, Jin Ok Yang], Jeongsu Oh] , Minjin Kimz,
yungwook Lee], Changwon Kan ? and Sanghyuk



Some proposed normalization
methods

e Reads Per Kilobase per Million mapped reads (RPKM): This
approach was initially introduced to facilitate comparisons between
genes within a sample.

o Not sufficient

e Upper Quartile (UQ): the total counts are replaced by the upper
quartile of counts different from 0 in the computation of the

normalization factors.

e Trimmed Mean of M-values (TMM): This normalization method is
implemented in the edgeR Bioconductor package (version 2.4.0).
Scaling is based on a subset of M values
o TMM seems to provide a robust scaling factor.



Next step ?

e Compare various samples
o Egq.
m control vs treated
m Normal vs tumor
m Poor/bad prognosis
H ...
o Compare expression level, isoforms, fusions,...

e Perform classification
e Compare RNA-Seq data to regulatory
data (ChIP-Seq,...)



Sequence read Archive (SRA)
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0 ANNOUNCEMENT: 12 Oct 2011: Status of the NCB| Sequence Read Archive (SRA)

SRA

The Sequence Read Archive (SRA) stores raw sequencing data from the next generation of sequencing platforms including Roche 454 GS System®, lllumina
Genome Analyzer®, Applied Biosystems SOLID® System, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Using SRA Tools Other Resources
Handbook BLAST SRA Home
Download SRA Run browser Trace Archive
E-Utilities Submit fo SRA Trace Assembly
SRA software GenBank Home

e The SRA archives high-throughput sequencing
data that are associated with:

e RNA-Seq, ChlP-Seq, and epigenomic data that are
submitted to GEO



SRA growth
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Mucleic Acids Res. 2011 Oct 18. [Epub ahead of print]
The sequence read archive: explosive growth of sequencing data.

Kodama Y, Shumway M, Leinonen R; on behalf of the International Nucleotide Sequence Database Collaboration.

Center for Information Biology and DNA Data Bank of Japan, Mational Institute of Genetics, Research Organization of Information and Systems, Yata, Mishima 411-8540, Japan, Mational Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, Bethesda, MD 20894, USA and European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15D, UK.

Abstract

New generation sequencing platforms are producing data with significantly higher throughput and lower cost. A portion of this capacity is devoted to individual and community scientific projects. As these projects reach publication, raw
sequencing datasets are submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). Archiving experimental data is the key to the progress of reproducible science. The SRA was established as a
public repository for next-generation sequence data as a part of the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is composed of the National Center for Biotechnology Information (NCBI), the European
Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at www.ncbi.nlm.nih.gov/sra from NCBI, at www.ebi.ac.uk/ena from EBI and at trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the
content and structure of the SRA and report on updated metadata structures, submission file formats and supported sequencing platforms. We also briefly outline our various responses to the challenge of explosive data growth.

PMID: 22009675 [PubMed - as supplied by publisher]  Free full text

In 2011 the SRA surpassed 100 Terabases of open-access
genetic sequence reads from next generation sequencing SRA database growth
technologies. The Illumina™ platform comprises 84%

of sequenced bases, with SOLiD™ and Roche/454™ 1000

platforms accounting for 12% and 2%, respectively. The
most active SRA submitters in terms of submitted bases
are the Broad Institute, the Wellcome Trust Sanger
Institute and Baylor College of Medicine with 31, 13
and 11%, respectively. The largest individual global
project generating next-generation sequence is the 1000
Genomes project which has contributed nearly one third 10
of all bases. The most sequenced organisms are Homo
sapiens with 61%, human metagenome with 6% and
Mus musculus with 5% share of all bases. The common
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