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Reminder: sampling 



Estimating a parameter of the population from a sample 

n  Situation 
q  We dispose of a sample drawn randomly from 

a population. 
q  We can easily compute the sample 

parameters such as mean, standard 
deviation. 

q  From these, we would like to estimate the 
corresponding population parameters.  

n  Problem 
q  The sample mean and standard deviation will 

vary depending on the particular sample. 
q  The population mean and standard deviation 

are however constant. 
n  Question 

q  To which extent can we rely on the mean and 
standard deviation  of the sample to estimate 
the mean and standard deviation of the 
population ? 
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Sampling distribution of the mean 



Sampling distribution of the mean 

n  In this simulation, the population is drawn randomly from a uniform distribution.  
n  When the sample size (n) increases, the sample mean tends towards a normal distribution. 

This is an application of the central limit theorem.  
n  On the histograms of the previous slide, the distribution of the sample means is always 

centred around 0.5, irrespective of the sample size.  The mean of the sample is an 
unbiased estimate of the population mean: its expected value equals the mean of the 
population.  

n  Note: the variance and standard deviation of the sample mean decrease as the sample 
size (n) increase.  

n  The expectation for the sample mean is the population mean. The sample mean is 
thus an unbiased estimator of the population mean.  
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Sampling distribution - Sample variance 

n  The sample variance is a biased estimator of the population variance. 
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n  For this reason, one has to introduce a corrective factor n/(n-1) when one tries 
to estimate the population variance from the sample variance. 
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n  Remarks 
q  This correction only matters for small samples.  

For large samples, n/(n-1) ~ 1. 
q  This correction is already included in some packages (e.g. R): when you 

compute the variance of a vector, the function var() returns the estimate for 
population variance rather than the actual variance of the input numbers (the 
sample). 
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Sampling distribution - The standard error 

n  The expectation for the sample mean is the population mean. The sample mean is 
thus an unbiased estimator of the population mean.  

n  The variance of the sample mean distribution differs from the population 
variance.  
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n  The standard deviation of the sample mean is called standard error. The standard 
error decreases when n increases. The larger is the sample, the more reliable is the 
estimation of the mean.  
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Reminder: mean comparison testing 



Introduction 

n  H0  null hypothesis 
n  HA  alternative hypothesis 
n  AH0  acceptation of the null hypothesis 
n  RH0  rejection of the null hypothesis 
n  α  P(RH0|H0)  probability to reject the null hypothesis when it is true 
n  β  P(AH0|HA)  probability to accept the null hypothesis when it is false 
n  1-β  P(RH0|HA)  Power of the test (also called rejection power) 

H0 HA
AH0 Correct Type II error

acception β risk
RH0 Type I error Correct

α risk rejection
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Two-tailed test of mean equality 

n  Two-tailed test  
q  H0:m1= m2 

q  H1:m1≠ m2 

n  Principle of the test 
q  Estimate the difference between m1 and m2  

q  Compare this estimation with the theoretical distribution 

n  Usually, the variance is a priori not know, and has to be estimated 
q  Warning: the variance of a difference is the sum of variances 

q  The formula for estimating the whether the populations are supposed to have or not similar 
variances 

n  The theoretical distribution is thus the Student (t)  
q  k=n1+n2-2 degrees of freedom 

q  α is shared between the two tails → use the value for t1- α/2 in Student's table  
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Estimating the variance of the difference between sample means 

n  Generally, the variance of the populations (σ1 and σ2) are not known a priori.  
q  They have thus to be estimated from the two samples. 
q  The variance of the sample is a biased estimation of the variance of the population (see chapter on 

estimation).  
q  Each variance estimate needs thus to be corrected by a factor n/(n-1). 

n  The estimation of the variance will raise an error, which has to be taken into account for the 
calculation of significance. This will be done differently depending on two considerations 

q  Can we assume that the two populations have the same variance ? 
q  Do the two sample have the same size ?  

n  Note: the estimators of variance have to be corrected for the bias (hence the ni-1 
numerator in the formula). 

11 



Populations with the same variance 

n  When one can assume that the two populations have the same variance (Student test), the 
variance of the difference is estimated as follows. 

If the two samples have the same size (n1=n2 =n), this formula can be 
simplified. 
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Population with different variances 

n  When one cannot assume that the two populations have the same variance (Welch test), 
the variance of the difference is estimated as follows 
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Unequal variances : the Welch test 

n  If one cannot assume variance 
equality, the same statistics (tobs) can 
be used, but the number of degrees of 
freedom k is calculated with the 
formula besides. 

q  Note: the formula to compute k in a 
Welch t-test returns positive Real 
numbers. The “number” of degrees of 
freedom does not need to be a Natural 
number anymore. 

n  This test is called the  
Welch t-test. 
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Principle of differential analysis 

n  Two-groups differential analysis with Welch test 
q  Principle: define a group of interest (“goi”, for example hyperdiploidy), and compare it to all other 

cancer subtypes. 
q  For each gene I, test the null hypothesis of mean equality 

•  H0: mi,goi = mi,others 

•  HA: mi,goi <> mi,others 

q  A priori, we expect that differential expression will cause a difference between group variances -> 
we apply Welch rather than Student test.  

n  Multi-groups differential analysis with ANOVA 
q  Test the hypothesis of mean equality between all groups. 
q  For each gene, analyze the variance and compare the inter-group variance with the intra-group 

(residual) variance.  
n  Multiple testing corrections 

q  The data set from Den Boer (2009) contains 22,283 probes. We are thus challenging 22,283 times 
the risk of false positive (considering a gene as significant whereas it is “truly null”). 

q  Different methods have been proposed to control the number of false positives:  
•  Bonferoni correction : decrease the significance threshold to alpha / N 
•  E-value: compute the expected number of false positives: e-value = p-value * N 
•  FWER: compute P(FP >= 1) 
•  q-value: estimate the false discovery rate (proportion of FP among the genes declared 

significant). 
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Non-parametric  
test 

Parametric  
tests 

Flow chart for the choice of a two-group mean comparison test 

n  Adapted from Firas Hammami 
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data ? 
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(Fisher-Snedecor) 

Welch t-test 

Student t-test 

Wilcoxon Mann-Whitney 
rank test 

Normality test 
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No 

Yes 
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No Large 
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Welch test results for two-groups differential analysis 
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Negative controls 

n  It is always useful to check empirically the 
significance of a selection procedure.  

n  For this, we can build negative controls, i.e. 
datasets where no difference is expected 
between groups. 

n  3 negative controls 
q  Random normal values. We build a fake  

expression matrix by generating random 
numbers following a normal distribution. This 
perfectly fits the working hypotheses 
underlying statistical tests (Student, ANOVA, 
…) but is not a very realistic image of the 
biological data. 

q  Matrix-wise random permutation of 
expression values. The distribution of values 
corresponds to the typical Affymetrix 
expression sets: left-skewed distribution. 

q  Permutation of sample labels. We maintain 
the structure of the original expression matrix, 
but the sample labels are re-assigned at 
random. In principle, the labels are balanced 
between all the cancer subtypes, and there 
should be no significant difference between 
the randomized groups.  
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Distribution of P-values from Welch test 

n  Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 

n  Data set: Den Boer et al. (2009). 
n  Welch test: hyperdiploid versus other types 

of Acute Lymphoblastic Leukemia. 
n  P-value distribution 

q  Abscissa: frequency class of the P-
value. 

q  Ordinate: number of genes falling in 
this class.  

n  3 negative controls 
q  Random normal values. 
•  Flat distribution, as expected. 

q  Matrix-wise random permutation of 
expression values. 
•  Flat distribution, as expected. 

q  Permutation of sample labels, analysis 
of the original expression matrix. 
•  Under-representation of low P-

values. Strange.  
n  Original expression matrix. 

q  Striking over-representation of the low 
P-values. This likely corresponds to 
differentially expressed genes.  



Distribution of P-values from Welch test 

n  Data source: Den Boer  et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. 
Lancet Oncol 10(2): 125-134. 

n  Data set: Den Boer et al. (2009). 
n  Welch test: hyperdiploid versus other types 

of Acute Lymphoblastic Leukemia. 
n  Volcano plots 

q  Abscissa: difference between the 
means 

q  Ordinate: significance of the test.  
n  3 negative controls 

q  Random normal values. 
•  All significances are negative. 

q  Matrix-wise random permutation of 
expression values. 
•  7 probesets are slightly significant. 

q  Permutation of sample labels, analysis 
of the original expression matrix. 
•  All significances are negative. 

n  Original expression matrix. 
q  2133 probesets  are declared 

significant (differentially expressed) 
with E-value <= 1. 



Welch versus Wilcoxon test 

n  Student and Welch tests are called 
“parametric”, because they rely on 
the assumption of normality of the 
data. 

n  With Affymetrix microarrays, the 
measured intensities generally 
strongly discard from normality. 

n  An alternative way to select 
differentially expressed genes is to 
apply a (non-parametric) Wilcoxon 
test to each gene separately.  

n  We ran a Welch and Student test on 
the 22,283 probesets of Den Boer 
dataset, to detect differentially 
expressed genes between two 
cancer types: TEL-AML1 and 
hyperdiploidy, resp.  
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Multiple testing 
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What is a P-value ? 

n  In the context of significance tests (e.g. detecting over-represented words, or estimating 
the significance of BLAST matching scores), the P-value represents the probability to 
generate by chance (under the background model) a value at least as distant from the 
expectation as the one we observe. 

q  Pval = P(X >= obs) 

n  For the analyst, this P-value indicates the risk to consider something as significant whereas 
it is not, i.e. the False Positive Risk (FPR).  

n  In the context of hypothesis testing, the concept of P-value is associated to the parameter 
alpha, the risk of first type error. The first type error consists in rejecting the null hypothesis 
H0 whereas it is true : P(RH0|H0). This alpha risk is estimated by testing the significance of 
the observed statistics (e.g. chi2obs, tobs) according to the theoretical distribution.  
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Application example:  
GREAT -  Genomic Regions Enrichment of Annotations Tool 

n  GREAT takes as input a set of genomic 
features (e.g. the peaks obtained from 
a ChIP-seq experiment). 

n  Identifies the set of genes matched by 
these features (genes are extended 
upstream and downstream to include 
regulatory regions). 

n  Assesses the enrichment of the set of 
target genes with each class of the 
Gene Ontology.  

n  One analysis involves several 
thousands of significant tests.  

q  http://great.stanford.edu/ 25 



Statistics 
n  Nomenclature 

q  F  number of false positives (FP) 
q  T  number of true positives (TP) 
q  S  number of tests called significant 
q  m0  number of truly null features 
q  m1  number of truly alternative features 
q  m total number of features  m = m0+m1 
q  p  threshold on p-value  p = E[F / m0] 
q  E[F]  expected number of false positives (also called E-value)  E[F] = p * m0 
q  Pr(F >+ 1)  family-wise error rate  FWER = 1 – (1 – p)^m0 
q  FDR  False discovery rate  FDR = E[F/S] = E[F / (F + T)] 
q  Sp  Specificity  Sp = (m0 – F) / m0 
q  Sn  Sensitivity  Sn = T / m1 

n  In practice 
q  We never know the values of F, T, m0, m1, or any statistics derived from them. 
q  The only observable numbers are the number of tests (m), and the number of these declared significant (S) or not 

(m-S). 
q  Some strategies have however been proposed to estimate m0 and m1 (see Storey and Tibshirani, 2003). 

n  Storey and Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci USA (2003) vol. 100 (16) pp. 9440-5 26 



Validation statistics 
n  Various statistics can be derived from the 4 elements of a contingency table.  
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FN/(FN+TN) 

Abbrev Name Formula
TP True positive TP
FP False positive FP
FN False negative FN
TN True negative TN
KP Known Positive TP+FN
KN Known Negative TN+FP
PP Predicted Positive TP+FP
PN Predicted Negative FN+TN
N Total TP + FP + FN + TN

Prev Prevalence (TP + FN)/N
ODP Overall Diagnostic Power (FP + TN)/N
CCR Correct Classification Rate (TP + TN)/N
Sn Sensitivity TP/(TP + FN)
Sp Specificity TN/(FP + TN)
FPR False Positive Rate FP/(FP + TN)
FNR False Negative Rate FN/(TP + FN) = 1-Sn
PPV Positive Predictive Value TP/(TP + FP)
FDR False Discovery Rate FP/(FP+TP)
NPV Negative Predictive Value TN/(FN + TN)
Mis Misclassification Rate (FP + FN)/N

Odds Odds-ratio (TP + TN)/(FN + FP)
Kappa Kappa ((TP + TN) - (((TP + FN)*(TP + FP) + (FP + 

TN)*(FN + TN))/N))/(N - (((TP + FN)*(TP + FP) 
+ (FP + TN)*(FN + TN))/N))

NMI NMI n(s) (1 - -TP*log(TP)-FP*log(FP)-FN*log(FN)-
TN*log(TN)+(TP+FP)*log(TP+FP)+(FN+TN)*log
(FN+TN))/(N*log(N) - ((TP+FN)*log(TP+FN) + 
(FP+TN)*log(FP+TN)))

ACP Average Conditional Probability 0.25*(Sn+ PPV + Sp + NPV)
MCC Matthews correlation coefficient (TP*TN - FP*FN) / sqrt[ 

(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)]
Acc.a Arithmetic accuracy (Sn + PPV)/2
Acc.a2 Accuracy (alternative) (Sn + Sp)/2
Acc.g Geometric accuracy sqrt(Sn*PPV)

Hit.noTN A sort of hit rate without TN (to 
avoid the effect of their large 
number)

TP/(TP+FP+FN)

TP 

FP TN 

FN 

Declared significant 
True False 

H
0 

Fa
ls

e 
Tr

ue
 

27 



Multi-testing corrections 

Statistics Applied to Bioinformatics 
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The problem of multiple testing 

n  Let us assume that the score of the alignment between two 
sequences has a p-value  
q  P(X > 0) = 0.0117 

n  What would happen if we consider this score as significant, while 
scanning a database that contains 200,000 sequences ? 

n  Let N be the number of tests 
q  The risk of error (P-value) associated to each gene will thus be 

challenged N times.  
q  The significance thresholds generally used for single testing 

(alpha = 0.01, 0.001) are thus likely to return many false 
positive.  

n  The situation of multiple testing is very frequent in bioinformatics 
q  Assessing the significance of each gene on a chip represents 

thousands of simultaneous tests.  
q  Genome-wide association studies (GWAS) are now routinely 

performed with SNP chips containing 600.000 SNPs. 
q  Sequence similarity searches (e.g. BLAST a sequence against 

all known proteins) amount to compare a query sequences to 
billions of database entries. 

0.0117 
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Multiple testing correction : Bonferroni's rule 

n  A first approach to correct for multiple tests is to 
apply Bonferroni's rule 
q  Adapt the p-value threshold ("alpha risk") to 

the number of simultaneous tests. 

€ 

α ≤
1
N
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Multiple testing correction : from P-value to E-value 

n  If p=P(X >0)=0.0117 and the database contains 
N=200,000 entries, we expect to obtain N*p = 2340 
false positives ! 

n  We are in a situation of multi-testing : each 
analysis amounts to test N hypotheses. 

n  The E-value (expected value) allows to take this 
effect into account :  
q  Eval = Pval * N 
q  Instead of setting a threshold on the P-value, 

we should set a threshold on the E-value.  
q  If we want to avoid false positive, this 

threshold should always be smaller than 1. 
• Threshold(Eval)  ≤ 1 

n  The fact to set a threshold ≤ 1 on the E-value is 
equivalent to Bonferroni's correction, which 
consists in adapting the threshold on the p-value. 

• Threshold(Pval) ≤ 1/N 

€ 

Eval = N ⋅Pval

31 



Multiple testing correction : Family-wise Error Rate (FWER) 

n  Another correction for multiple testing consists in 
estimating the Family-Wise Error Rate (FWER).  

n  The FWER is the probability to observe at least 
one false positive in the whole set of tests. This 
probability can be calculated quite easily from the 
P-value (Pval).  

€ 

FWER = 1− 1− Pval( )N
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False Discovery Rate (FDR) 

n  Yet another approach is to consider, for a given 
threshold on P-value, the False Discovery Rate 
(FDR), i.e. the proportion of false predictions 
within a set of tests declared significant. 
q  FP  number of false positives 
q  TP  number of true positives 

€ 

FDR = FP / FP+TP( )
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Summary - Multi-testing corrections 

n  Bonferroni rule adapt significance threshold 

n  E-value  expected number of false positives 

n  FWER  Family-wise error rate:  
 probability to observe  
 at least one false positive 

n  FDR  False discovery rate: 
 estimated rate of false positives  
 among the predictions 

€ 

αBonf ≤
1
N

€ 

Eval = N ⋅Pval

€ 

FWER = 1− 1− Pval( )N

€ 

FDR = FP / FP+TP( )
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The “q-value”  
(Storey and Tibshirani, 2003) 

Statistics for bioinformatics 



How can we estimate the m0 / m1 proportions ? 

n  TO BE COMPLETED 
n  See the practical about multiple testing correction on the supporting Web site. 

q  http://pedagogix-tagc.univ-mrs.fr/courses/statistics_bioinformatics/ 

n  Storey and Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci USA (2003) vol. 100 (16) pp. 9440-5. 
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Study case from Storey and Tibshirani 

Fig 1 from Storey and Tibshirani, 2003) Application to another study case  
(ALL versus AML expression from Goub et 
al., 1999) 

Negative control: permuted data from 
Golub et al. (1999) 
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Introduction to clustering 

n  Clustering is an unsupervised approach 
q  Class discovery: starting from a set of objects, group them into classes, without any prior 

knowledge of these classes. 
n  There are many clustering methods 

q  hierarchical 
q  k-means 
q  self-organizing maps (SOM) 
q  knn 
q  ... 

n  The results vary drastically depending on  
q  clustering method 
q  similarity or dissimilarity metric 
q  additional parameters specific to each clustering method (e.g. number of centres for the k-mean, 

agglomeration rule for hierarchical clustering, ...) 



Data sets 



Diauxic shift 

n  DeRisi et al published the first article describing a 
full-genome monitoring of gene expression data. 

n  This article reported an experiment called 
“diauxic shift” with with 7 time points. 

n  Initially, cells are grown in a glucose-rich medium.  
n  As time progresses, cells  

q  Consume glucose -> when glucose becomes 
limiting 
•  Glycolysis stops 
•  Gluconeogenesis is activated to produce 

glucose 
q  Produce by-products -> the culture medium 

becomes polluted/ 
•  Stress response 

n  DeRisi et al. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science (1997) vol. 278 (5338) pp. 680-6 



Cell cycle data 

n  Spellman et al. (1998) 
n  Time profiles of yeast cells followed during cell 

cycle. 
n  Several experiments were regrouped, with 

various ways of synchronization (elutriation, cdc 
mutants, …) 

n  ~800 genes showing a periodic patterns of 
expression were selected (by Fourier analysis) 

n  Spellman et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol 
Biol Cell (1998) vol. 9 (12) pp. 3273-97 



Gene expression data – response to environmental changes 

n  Gasch et al. (2000), 173 chips (stress response, 
heat shock, drugs, carbon source, …) 

n  Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57. 



Gene expression data - carbon sources 

n  Gasch et al. (2000), 173 chips (stress response, heat shock, drugs, carbon source, …) 
n  We selected the 13 chips with the response to different carbon sources.  

n  Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57. 



Data standardization and filtering 

n  For the cell cycle experiments, genes had already been filtered in the original publication. 
We used the 800 selected genes for the analysis. 

n  For the diauxic shift and carbon source experiments, each chip contain >6000 genes, most 
of which are un-regulated.  

n  Standardization 
q  We applied a chip-wise standardization (centring and scaling) with robust estimates (median and 

IQR) on each chip.  
n  Filtering 

q  Z-scores obtained after standardization were converted  
•  to P-value (normal distribution) 
•  to E-value (=P-value*N) 

q  Only genes with an E-value < 1 were retained for clustering.  



Filtering of carbon source data 

Gene expression  
profiles 
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YAR008W -2.70 0.36 0.03 -4.90 -0.94 -0.53 0.64 -0.53 -2.57 -0.73 0.38 -1.75 -0.55
YAR071W -5.43 -1.22 2.73 -0.44 -0.24 3.24 -6.69 1.10 -5.21 1.39 -0.70 0.22 2.94
YBL005W 1.40 3.05 3.97 4.92 1.18 5.52 -0.53 0.79 -0.84 -1.00 1.12 -2.26 1.23
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... ... ... ... ... ... ... ... ... ... ... ... ... ...

Carbon sources
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Hierarchical clustering of expression profiles 

n  In 1998, Eisen et al.  
q  Implemented a software tool called Cluster, 

which combine hierarchical clustering and 
heatmap visualization. 

q  Applied it to extract clusters of co-expressed 
genes from various types of expression 
profiles. 

n  Eisen et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A (1998) 
vol. 95 (25) pp. 14863-8 



Clustering with gene expression data 

Gene expression  
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YBL043W 3.91 -1.16 -4.89 -4.90 -1.61 -4.76 4.47 -6.97 -0.61 -6.67 -7.12 0.78 -9.73
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Carbon sources



Hierarchical clustering on gene expression data 

Gene expression  
profiles 

Chip-wise  
standardization Z-scores 

Pairwise distance  
calculation 

Distance  
matrix 

Threshold  
filtering 

Profiles of  
regulated genes 

YAL066W YAR008W YAR071W YBL005W YBL015W YBL043W YBR018C YBR019C YBR020W YBR054W ...
YAL066W 0.00 6.82 12.99 16.33 11.64 17.39 36.41 32.52 36.07 12.00 ...
YAR008W 6.82 0.00 11.70 13.69 12.58 18.18 37.51 33.46 37.18 12.36 ...
YAR071W 12.99 11.70 0.00 13.32 21.77 26.62 42.48 38.48 42.15 21.09 ...
YBL005W 16.33 13.69 13.32 0.00 19.52 25.04 44.95 41.16 44.62 17.86 ...
YBL015W 11.64 12.58 21.77 19.52 0.00 8.51 34.47 30.79 33.77 6.46 ...
YBL043W 17.39 18.18 26.62 25.04 8.51 0.00 31.74 28.64 30.90 11.13 ...
YBR018C 36.41 37.51 42.48 44.95 34.47 31.74 0.00 5.12 4.66 35.84 ...
YBR019C 32.52 33.46 38.48 41.16 30.79 28.64 5.12 0.00 4.81 32.58 ...
YBR020W 36.07 37.18 42.15 44.62 33.77 30.90 4.66 4.81 0.00 35.63 ...
YBR054W 12.00 12.36 21.09 17.86 6.46 11.13 35.84 32.58 35.63 0.00 ...

... ... ... ... ... ... ... ... ... ... ... ...



Hierarchical clustering 

Hierarchical clustering on gene expression data 

Gene expression  
profiles 

Chip-wise  
standardization Z-scores 

Tree building Tree 

Pairwise distance  
calculation 

Distance  
matrix 

Threshold  
filtering 

Profiles of  
regulated genes 



Principle of tree building 
n  Hierarchical clustering is an aggregative clustering 

method 
q  takes as input a distance matrix  
q  progressively regroups the closest objects/groups 

n  One needs to define a (dis)similarity metric between 
two groups. There are several possibilities 

q  Average linkage: the average distance between 
objects from groups A and B  

q  Single linkage: the distance between the closest 
objects from groups A and B 

q  Complete linkage: the distance between the most 
distant objects from groups A and B 

n  Algorithm 
q  (1) Assign each object to a separate cluster. 
q  (2) Find the pair of clusters with the shortest distance, 

and regroup them in a single cluster 
q  (3) Repeat (2) until there is a single cluster 

n  The result is a tree, whose intermediate nodes 
represent clusters 

q  N objects → N-1 intermediate nodes 
n  Branch lengths represent distances between 

clusters object 2 

object 4 

object 1 

object 3 

object 5 
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root 

Tree representation 

o
b

je
ct

 1

o
b

je
ct

 2

o
b

je
ct

 3

o
b

je
ct

 4

o
b

je
ct

 5

object 1 0.00 4.00 6.00 3.50 1.00
object 2 4.00 0.00 6.00 2.00 4.50
object 3 6.00 6.00 0.00 5.50 6.50
object 4 3.50 2.00 5.50 0.00 4.00
object 5 1.00 4.50 6.50 4.00 0.00

Distance matrix



Isomorphism on a tree 

n  In a tree, the two children of any 
branch node can be swapped. The 
result is an isomorphic tree, 
considered as equivalent to the intial 
one.  

n  The two trees shown here are 
equivalent, however 
q  Top tree: leaf 1 is far away from 

leaf 2 
q  Bottom tree: leaf 1 is  neighbour 

from leaf 2 
n  The vertical distance between two 

nodes does NOT reflect their actual 
distance ! 

n  The distance between two nodes is 
the sum of branch lengths. 

leaf 2 

leaf 4 

leaf 1 

leaf 3 

leaf 5 
c1 
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c3 
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branch  
node 

root 

leaf 4 

leaf 2 

leaf 5 
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Hierarchical clustering on gene expression data 

Gene expression  
profiles 

Chip-wise  
standardization Z-scores 

Hierarchical  
clustering Tree 

Pairwise distance  
calculation 

Distance  
matrix 

Threshold  
filtering 

Profiles of  
regulated genes 

Tree cut Clusters 



Impact of the agglomeration rule 
n  The choice of the agglomeration rule has a strong impact on the structure of a tree 

resulting from hierarchical clustering. 

n  Those four trees 
were built from the 
same distance 
matrix, using 4 
different 
agglomeration rules.  

n  The clustering order 
is completely 
different. 

n  Single-linkage 
typically creates 
nesting clusters 
(“Matryoshka dolls”). 

n  Complete and Ward 
linkage create more 
balanced trees. 

n  Note: the matrix was 
computed from a 
matrix of random 
numbers. The 
subjective impression 
of structure are thus 
complete artifacts. 



Golub 1999 - Impact of the linkage method (Euclidian distance for all the trees) 



Golub 1999 - Effect of the distance metrics (complete linkage for all the trees) 



Golub 1999 - Gene clustering 

n  Gene clustering highlights groups 
of genes with similar expression 
profiles. 



Golub 1999 - Ward Biclustering - Euclidian distance 

n  Biclustering consists in 
clustering the rows (genes) and 
the columns (samples) of the 
data set.  

n  This reveals some subgroups 
of samples. 

n  With the golub 1999 data set  
q  The AML and ALL patients are 

clearly separated at the top 
level of the tree 

q  There are apparently two 
clusters among the AML 
samples.  



Golub 1999 - Ward Biclustering - Dot product distance 

n  Biclustering consists in clustering 
the rows (genes) and the columns 
(samples) of the data set.  

n  This reveals some subgroups of 
samples. 

n  With the golub 1999 data set  
q  The AML and ALL patients are 

clearly separated at the top level 
of the tree 

q  There are apparently two clusters 
among the ALL samples. Actually 
these two clusters correspond to 
distinct cell subtypes: T and B 
cells, respectively. 



Impact of distance metrics and agglomeration rules 
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Golub 1999 - Pruning the tree 



Impact of the linkage method 



Impact of the distance metric - complete linkage 



Ipact of the distance metric - single linkage 











Pruning and cutting the tree 

n  The tree can be cut at level k (starting from the root), which creates k clusters 
n  A k-group partitioning is obtained by collecting the leaves below each branch of the pruned 

tree 



Den Boer 2009 – Hierarchical clustering 
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K-means clustering 



Clustering around mobile centres 

n  The number of centres (k) has to be specified a priori 
n  Algorithm 

q  (1) Arbitrarily select k initial centres 
q  (2) Assign each element to the closest centre 
q  (3) Re-calculate centres (mean position of the assigned elements) 
q  (4) Repeat (2) and (3) until one of the stopping conditions is reached 

•  the clusters are the same as in the previous iteration 
•  the difference between two iterations is smaller than a specified threshold 
•  the max number of iterations has been reached 



Mobile centres example - initial conditions 

n  Two sets of random 
points are randomly 
generated 

q  200 points centred on 
(0,0) 

q  50 points centred on (1,1) 

n  Two points are 
randomly chosen as 
seeds (blue dots) 



Mobile centres example - first iteration 

n  Step 1 
q  Each dot is assigned 

to the cluster with the 
closest centre 

q  Centres are re-
calculated (blue star) 
on the basis of the 
new clusters 



Mobile centres example - second iteration 

n  At each step,  
q  points are re-assigned 

to clusters 
q  centres are re-

calculated 
n  Cluster boundaries and 

centre positions evolve 
at each iteration 



Mobile centres example - after 3 iterations 

n  At each step,  
q  points are re-assigned 

to clusters 
q  centres are re-

calculated 
n  Cluster boundaries and 

centre positions evolve 
at each iteration 



Mobile centres example - after 4 iterations 

n  At each step,  
q  points are re-assigned 

to clusters 
q  centres are re-

calculated 
n  Cluster boundaries and 

centre positions evolve 
at each iteration 



Mobile centres example - after 5 iterations 

n  At each step,  
q  points are re-assigned 

to clusters 
q  centres are re-

calculated 
n  Cluster boundaries and 

centre positions evolve 
at each iteration 



Mobile centres example - after 6 iterations 

n  At each step,  
q  points are re-assigned 

to clusters 
q  centres are re-

calculated 
n  Cluster boundaries and 

centre positions evolve 
at each iteration 



Mobile centres example - after 10 iterations 

n  After some iterations (6 
in this case), the 
clusters and centres do 
not change anymore 



Mobile centres example - random data 



K-means clustering 

n  K-means clustering is a variant of clustering around mobile centres 
n  After each assignation of an element to a centre, the position of this centre is re-calculated 
n  The convergence is much faster than with the basic mobile centre algorithm  

q  after 1 iteration, the result might already be stable 
n  K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects) 



Clustering with gene expression data 

n  Clustering can be performed in two ways 
q  Taking genes as objects and conditions/cell types as variables 
q  Taking conditions/cell types as objects and genes as variables 

n  Problem of dimensionality 
q  When genes are considered as variables, there are many more variables than objects 
q  Generally, only a very small fraction of the genes are regulated (e.g. 30 genes among 6,000) 
q  However, all genes will contribute equally to the distance metrics 
q  The noise will thus affect the calculated distances between conditions 

n  Solution 
q  Selection of a subset of strongly regulated genes before applying clustering to conditions/cell types 



K-means clustering 

n  K-means clustering is a variant of clustering around mobile centres 
n  After each assignation of an element to a centre, the position of this centre is re-calculated 
n  The convergence is much faster than with the basic mobile centre algorithm  

q  after 1 iteration, the result might already be stable 
n  K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects) 



Diauxic shift: k-means clustering on all genes 



Diauxic shift: k-means clustering on filtered genes 



Diauxic shift: k-means clustering on permuted filtered genes 



Cell cycle data: K-means clustering 



Cell cycle data: K-means clustering, permuted data 



Carbon sources: K-means clustering 



Golub - K-means clustering 



K-means clustering - summary 

n  Strengths 
q  Simple to use  
q  Fast 
q  Can be used with very large data sets 

n  Weaknesses 
q  The choice of the number of groups is arbitrary 
q  The results vary depending on the initial positions of centres 
q  The R implementation is based on Euclidian distance, no other metrics are proposed 

n  Solutions 
q  Try different values for k and compare the result 
q  For each value of k, run repeatedly to sample different initial conditions 

n  Weakness of the solution 
q  Instead of one clustering, you obtain hundreds of different clustering results, totaling thousands of 

clusters, how to decide among them 



Evaluation of  
clustering results 

Statistical Analysis of Microarray Data 



How to evaluate the result ? 

n  It is very hard to make a choice between the multiple possibilities of 
distance metrics, clustering algorithms and parameters. 

n  Several criteria can be used to evaluate the clustering results 
q  Consensus: using different methods, comparing the results and extracting a 

consensus 
q  Robustness: running the same algorithm multiple times, with different initial 

conditions 
•  Bootstrap 
•  Jack-knife 
•  Test different initial positions for the k-means 

q  Biological relevance: compare the clustering result to functional 
annotations (functional catalogs, metabolic pathways, ...) 



k1 k2 k3 k4 k5 k6 k7 Sum
h1 0 0 2 18 14 1 0 35
h2 0 0 0 4 0 0 0 4
h3 0 0 0 0 10 0 0 10
h4 40 0 10 0 0 9 0 59
h5 2 12 0 0 0 5 0 19
h6 0 0 0 0 0 0 4 4
h7 0 2 0 0 0 0 0 2
Sum 42 14 12 22 24 15 4 133

k-means clustering
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k4 k3 k5 k1 k2 k7 k6 Sum
h1 18 2 14 0 0 0 1 35
h2 4 0 0 0 0 0 0 4
h3 0 0 10 0 0 0 0 10
h4 0 10 0 40 0 0 9 59
h5 0 0 0 2 12 0 5 19
h6 0 0 0 0 0 4 0 4
h7 0 0 0 0 2 0 0 2
Sum 22 12 24 42 14 4 15 133

Correspondence between clusters
hierarchical h1 h2 h3 h4 h5 h6 h7
k-means k4 k3 k5 k1 k2 k7 k6
Matches 84 Hit rate
Mismatches 49 Error rate

k-means clustering
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63.2%
36.8%

Comparing two clustering results 

n  If two methods return partitions 
of the same size, their clusters 
can be compared in a confusion 
table 

n  Optimal correspondences 
between clusters can be 
established (permuting columns 
to maximize the diagonal) 

n  The consistency between the 
two classifications can then be 
estimated with the hit rate 

n  Example :  
q  Carbon source data, comparison of k-

means and hierarchical clustering 



Evaluation of robustness - Bootstrap 

n  The bootstrap consists in repeating r times (for 
example r=100) the clustering, using each time  
q  Either a different subset of variables 
q  Or a different subset of objects 

n  The subset of variables is selected randomly, with 
resampling (i.e. the same variable can be present 
several times, whilst other variables are absent.   

n  On the images the tree is colored according to 
the reproducibility of the branches during a 100-
iterations bootstrap.  


