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Reminder: sampling



Estimating a parameter of the population from a sample

= Situation

o We dispose of a sample drawn randomly from

a population.
o We can easily compute the sample

parameters such as mean, standard
deviation.

o From these, we would like to estimate the
corresponding population parameters.
U,O= Problem
o The sample mean and standard deviation will
vary depending on the particular sample.
o The population mean and standard deviation
are however constant.
= Question

o To which extent can we rely on the mean and
standard deviation of the sample to estimate
the mean and standard deviation of the
population ?
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Sampling distribution of the mean

In this simulation, the population is drawn randomly from a uniform distribution.

When the sample size (n) increases, the sample mean tends towards a normal distribution.
This is an application of the central limit theorem.

On the histograms of the previous slide, the distribution of the sample means is always
centred around 0.5, irrespective of the sample size. The mean of the sample is an
unbiased estimate of the population mean: its expected value equals the mean of the
population.

Note: the variance and standard deviation of the sample mean decrease as the sample
size (n) increase.

The expectation for the sample mean is the population mean. The sample mean is
thus an unbiased estimator of the population mean.

E ( X ) =m I’/I\’l = )_( (the hat means "estimate")




Sampling distribution - Sample variance

= The sample variance is a biased estimator of the population variance.

= For this reason, one has to introduce a corrective factor n/(n-1) when one tries
to estimate the population variance from the sample variance.

= Remarks

o This correction only matters for small samples.
For large samples, n/(n-1) ~ 1.

o This correction is already included in some packages (e.g. R): when you
compute the variance of a vector, the function var() returns the estimate for
population variance rather than the actual variance of the input numbers (the
sample).



Sampling distribution - The standard error

The expectation for the sample mean is the population mean. The sample mean is
thus an unbiased estimator of the population mean.

E ( X ) = m ﬁfl — )_( (the hat means "estimate")

The variance of the sample mean distribution differs from the population
variance.

for a finite population for an infinite population
2
O (N-n
oF = or=0"/n
n\N-1

The standard deviation of the sample mean is called standard error. The standard
error decreases when n increases. The larger is the sample, the more reliable is the
estimation of the mean.

For a finite population For an infinite population
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Reminder: mean comparison testing




L

-~ ™
=

null hypothesis

alternative hypothesis

acceptation of the null hypothesis
rejection of the null hypothesis

P(RH,|H,) probability to reject the null hypothesis when it is true
P(AH,H,  probability to accept the null hypothesis when it is false
P(RH,H,) Power of the test (also called rejection power)

Introduction

a risk
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AHO Correct |Type Il error
acception B risk
RHO Type |l error| Correct
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Two-tailed test of mean equality

Two-tailed test

Principle of the test
o Estimate the difference between m; and m,

o Compare this estimation with the theoretical distribution

Usually, the variance is a priori not know, and has to be estimated
o Warning: the variance of a difference is the sum of variances

o The formula for estimating the whether the populations are supposed to have or not similar
variances

The theoretical distribution is thus the Student (t)

o k=n,+n,-2 degrees of freedom

0 O is shared between the two tails — use the value for ¢, ,, in Student's table

o= a Reject H,, if Lobs Z 412
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Estimating the variance of the difference between sample means

Generally, the variance of the populations (o1 and 02) are not known a priori.
o They have thus to be estimated from the two samples.

o The variance of the sample is a biased estimation of the variance of the population (see chapter on
estimation).

o Each variance estimate needs thus to be corrected by a factor n/(n-1).
The estimation of the variance will raise an error, which has to be taken into account for the
calculation of significance. This will be done differently depending on two considerations

o Can we assume that the two populations have the same variance ?

o Do the two sample have the same size ?

Note: the estimators of variance have to be corrected for the bias (hence the n-7
numerator in the formula).

-y) -y 2 2
1 2 1 2
n, n, n—-1 n,-1
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Populations with the same variance

When one can assume that the two populations have the same variance (Student test), the

variance of the difference is estimated as follows.
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If the two samples have the same size (n,;=n, =n), this formula can be

simplified.
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Population with different variances

= When one cannot assume that the two populations have the same variance (Welch test),
the variance of the difference is estimated as follows

2 2 2 2
A n,s; n,s, S 85
2 n(n, -1 n,(n,-1) n-1 n,-1
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Unequal variances : the Welch test

If one cannot assume variance
equality, the same statistics (z,,,) can
be used, but the number of degrees of
freedom k is calculated with the
formula besides.

o Note: the formula to compute kin a
Welch t-test returns positive Real
numbers. The “number” of degrees of
freedom does not need to be a Natural
number anymore.

This test is called the
Welch t-test.
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Principle of differential analysis

= Two-groups differential analysis with Welch test

o Principle: define a group of interest (“goi”, for example hyperdiploidy), and compare it to all other
cancer subtypes.

o For each gene I, test the null hypothesis of mean equality
° HO'. m; goi = mi,others

° Hym

i,goi

<>m.

i,goi i,others

o A priori, we expect that differential expression will cause a difference between group variances ->
we apply Welch rather than Student test.
= Multi-groups differential analysis with ANOVA
o Test the hypothesis of mean equality between all groups.
o For each gene, analyze the variance and compare the inter-group variance with the intra-group
(residual) variance.
= Multiple testing corrections

o The data set from Den Boer (2009) contains 22,283 probes. We are thus challenging 22,283 times
the risk of false positive (considering a gene as significant whereas it is “truly null”).

o Different methods have been proposed to control the number of false positives:

Bonferoni correction : decrease the significance threshold to alpha / N

E-value: compute the expected number of false positives: e-value = p-value * N
FWER: compute P(FP >= 1)

g-value: estimate the false discovery rate (proportion of FP among the genes declared
significant).
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Flow chart for the choice of a two-group mean comparison test

Normality test

(ex: Shapiro) _
Non-parametric
test
Normally No Large No : :
distributed > number of | ttleEren eIy
. rank test
data ? replicates?
Yes
\ 4
Variance equality test |,
(Fisher-Snedecor)
Parametric
Yes tests
Yes
> Student t-test
Groups of
equal
variance?
> Welch t-test
No

= Adapted from Firas Hammami
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expression matrix by generating random
numbers following a normal distribution. This
perfectly fits the working hypotheses
underlying statistical tests (Student, ANOVA,
...) but is not a very realistic image of the
biological data.

Matrix-wise random permutation of
expression values. The distribution of values
corresponds to the typical Affymetrix
expression sets: left-skewed distribution.

Permutation of sample labels. \We maintain
the structure of the original expression matrix,
but the sample labels are re-assigned at
random. In principle, the labels are balanced
between all the cancer subtypes, and there
should be no significant difference between
the randomized groups.

Frequency
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0
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Negative controls

= |t is always useful to check empirically the
significance of a selection procedure.

= For this, we can build negative controls, i.e.
datasets where no difference is expected
between groups.

= 3 negative controls
o Random normal values. \We build a fake

Random normal control

random values

Matrix-wise permuted expression values

Expression
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Distribution of P-values from Welch test

Data set: Den Boer et al. (2009).

Welch test: hyperdiploid versus other types
of Acute Lymphoblastic Leukemia.

P-value distribution

o Abscissa: frequency class of the P-
value.

o Ordinate: number of genes falling in
this class.

3 negative controls
o Random normal values.
* Flat distribution, as expected.

o Matrix-wise random permutation of
expression values.

* Flat distribution, as expected.
o Permutation of sample labels, analysis
of the original expression matrix.
® Under-representation of low P-
values. Strange.
= Original expression matrix.
o Striking over-representation of the low

P-values. This likely corresponds to
differentially expressed genes.
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= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.

Lancet Oncol 10(2): 125-134.



Distribution of P-values from Welch test

Data set: Den Boer et al. (2009).

Welch test: hyperdiploid versus other types
of Acute Lymphoblastic Leukemia.

Volcano plots

o Abscissa: difference between the
means

o Ordinate: significance of the test.
3 negative controls
o Random normal values.
* All significances are negative.

o Matrix-wise random permutation of
expression values.

® 7 probesets are slightly significant.

o Permutation of sample labels, analysis
of the original expression matrix.

* All significances are negative.
= Original expression matrix.

o 2133 probesets are declared
significant (differentially expressed)
with E-value <= 1.

-log10(E-value)

sig=

-log10(E-value)

sig=

10

10

Random normal values

Difference between the means

Permuted sample labels

Difference between the means

~log10(E-value)

sig=

-log10(E-value)

sig=

Matrix-wise permuted expression values

10
|

-1.0 -0.5 0.0 05 10

Difference between the means

Den Boer 2009, hyperdiploid versus others

Difference between the means

= Data source: Den Boer et al. 2009. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study.

Lancet Oncol 10(2): 125-134.



Welch versus Wilcoxon test

= Student and Welch tests are called DEG selection in Den Boer (2009), TEL-AML1 vs hyperdiploidy

“parametric”, because they rely on
the assumption of normality of the
data.

= With Affymetrix microarrays, the
measured intensities generally
strongly discard from normality.

= An alternative way to select
differentially expressed genes is to
apply a (non-parametric) Wilcoxon
test to each gene separately.

= We ran a Welch and Student test on
the 22,283 probesets of Den Boer
dataset, to detect differentially
expressed genes between two
cancer types: TEL-AML1 and
hyperdiploidy, resp.

1e-17 1e-10 1e-03

Wilcoxon test p—value

1e-24

1e-31

T T T T
1e-31 1e-24 1e-17 1e-10 1e-03

Welch test p—value
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What is a P-value ?

In the context of significance tests (e.g. detecting over-represented words, or estimating
the significance of BLAST matching scores), the P-value represents the probability to
generate by chance (under the background model) a value at least as distant from the
expectation as the one we observe.

o Pval = P(X>= obs)

For the analyst, this P-value indicates the risk to consider something as significant whereas
it is not, i.e. the False Positive Risk (FPR).

In the context of hypothesis testing, the concept of P-value is associated to the parameter

alpha, the risk of first type error. The first type error consists in rejecting the null hypothesis
H, whereas it is true : P(RH,|H,). This alpha risk is estimated by testing the significance of
the observed statistics (e.g. chi2,,, t,,) according to the theoretical distribution.
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Application example:

GREAT - Genomic Regions Enrichment of Annotations Tool

Genomic Regions Enrichment of Annotations Tool

= GREAT takes as input a set of genomic BREAT. predicts functions of cis-regulatory regions.

features (e.g. the peaks obtained from

a Ch I P'Seq eXperi ment) Example: YSRF ChiP-Seq called peaks

1. Input: A set of Genomic Regions

(such as transcription factor binding events Yy Y y vy Y
= Identifies the set of genes matched by ISty i POoRr
these features (genes are extended
2. GREAT associates both proximal and distal [* Gene transcription start site \_s Association

UpStream and dOWﬂStream to inCIUde input Genomic Regions with their putative e yv 1 Sy Toaly B vl
regulatory regions). target genes. N rd A v

= Assesses the enrichment of the set of

target genes with each class of the

Gene Ontology.

One analysis involves several
thousands of significant tests.

o http://great.stanford.edu/

3. GREAT uses gene Annotations from
numerous ontologies to associate genomic
regions with annotations.

4. GREAT calculates statistical Enrichments for
associations between Genomic Regions
and Annotations.

5. Output: Annotation terms that are
significantly associated with the set of input
Genomic Regions.

6. Users can create UCSC custom tracks from
term-enriched subsets of Genomic Regions.
Any track can be directly submitted to
GREAT from the UCSC Table Browser.

A Ontology annotation (e.g. “actin binding”)

A A
(2 OS] NSy Ay
\ 9

Y
s U R RN THAT

A

== Requlatory domains of all genes annotated with A
n =6 genomic regions k = 4 genomic regions regulate genes

p = 05 of genome annotated with A annotated with A

prvaluey (e.g. “actin binding)~ Probability, . { ka4 | n=6, p=0.5)

Ontology term p-value
SRF peaks regulate Actin cytoskeleton  10°°
genesimolved in: FOS gene family 1 0:;
TRAIL signaling 10
create tracks
BREAT —— uCsCGenome
- et ET
results  submit tracks Browser
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Statistics

= Nomenclature
F number of false positives (FP)

Q

T number of true positives (TP)
S number of tests called significant

mg number of truly null features

m, number of truly alternative features

m total number of features m = my+m,

p threshold on p-value p = E[F / mO]

E[F] expected number of false positives (also called E-value) E[F]=p*m0
Pr(F >+ 1) family-wise error rate FWER =1-(1-p)*mO

FDR False discovery rate FDR = E[F/S]=E[F/(F + T)]

Sp Specificity Sp=(m0-F)/m0

Sn Sensitivity Sn=T/m1

= In practice

Q

Q

Q

= Storey and Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci USA (2003) vol. 100 (16) pp.

We never know the values of F, T, m0, m1, or any statistics derived from them.

The only observable numbers are the number of tests (m), and the number of these declared significant (S) or not

(m-S).

Some strategies have however been proposed to estimate m0 and m17 (see Storey and Tibshirani, 2003).

Table 1. Possible outcomes from thresholding m features
for significance

Called significant Called not significant

Total

Null true F mo — F
Alternative true T m —-T
Total S m-—S

mo

9440-5 26



Declared significant

Validation statistics

True False
2 FP TN
= Various statistics can be derived from the 4 elements of a contingency table. = =
(0]
E‘g TP FN
Abbrev Name Formula
TP True positive TP
FP___ False positive FP Sn =TP/(TP+FN)  PPV=TP/(TP+FP)
EN False negative FN Declared significant Declared significant
TN True negative TN ° True False o True False
KP__ Known Positive TP+FN 2 e - = = ™
KN Known Negative TN+FP % % ®
PP Predicted Positive TP+FP 3 @
PN Predicted Negative FN+TN &L - FN E- FN
N Total TP + FP + FN + TN
Prev Prevalence (TP + FN)/N
ODP Overall Diagnostic Power (FP + TN)/N Sp=TN/(FP+TN) NPV=TN/(FN+TN)
CCR___ Correct Classification Rate (TP + TN)/N Declared significant Declared significant
Sn Sensitivity TP/(TP + FN)
Sp Specificity TN/(FP + TN) 0 True False §True False
FPR__ False Positive Rate FP/(FP + TN) e - Ep -
FNR __ False Negative Rate FN/(TP + FN) = 1-Sn 2|, 2| g
PPV Positive Predictive Value TP/(TP + FP) <| TP FN sl TP FN
FDR  False Discovery Rate FP/(FP+TP) =
NPV Negative Predictive Value TN/(FN + TN)
Mis Misclassification Rate (FP + FN)/N
Odds__ Odds-ratio (TP + TN)/(FN + FP) FPR=FP/(FP+TN)  FDR=FP/(FP+TP)
Kappa Kappa ((TP + TN) - (((TP + FN)*(TP + FP) + (FP + Declared significant Declared significant
TN)*(FN + TN))/N))/(N - (((TP + FN)*(TP + FP) o True False o True False
+ (FP + TN)*(FN + TN))/N)) E] =
NMI __NMI n(s) (1 - -TP*log(TP)-FP*log(FP)-FN*log(FN)- ol © - TN o - N
TN*log(TN)+(TP+FP)*log(TP+FP)+(FN+TN)*log Tlg - ~ Tl 8 p ~
(FN+TN))/(N*log(N) - ((TP+FN)*log(TP+FN) + 8 &L
(FP+TN)*log(FP+TN)))
ACP Average Conditional Probability 0.25*(Sn+ PPV + Sp + NPV)
MCC Matthews correlation coefficient (TP*TN - FP*FN) / sqrt[ FN/(FN+TN) FNR=FN/(TP+FN)
, ; (TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)] Declared significant Declared significant
Acc.a Arithmetic accuracy (Sn + PPV)/2
Acc.a2 Accuracy (alternative) (Sn + Sp)/2 0 True  False g True  False
Acc.g Geometric accuracy sqrt(Sn*PPV) =l FP TN H Fp TN
Hit.noTN A sort of hit rate without TN (to TP/(TP+FP+FN) 2 ® 2l o
avoid the effect of their large 21 1P - §| TP -
number) .
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Statistics Applied to Bioinformatics

Multi-testing corrections



The problem of multiple testing

Let us assume that the score of the alignment between two

sequences has a p-value =

o P(X>0)=0.0117
What would happen if we consider this score as significant, while

10

[ ]
0.0

scanning a database that contains 200,000 sequences ? —

Let N be the number of tests

o The risk of error (P-value) associated to each gene will thus t°
challenged N times.

o The significance thresholds generally used for single testing
(alpha = 0.01, 0.001) are thus likely to return many false
positive.

The situation of multiple testing is very frequent in bioinformatics

o Assessing the significance of each gene on a chip represents
thousands of simultaneous tests.

o Genome-wide association studies (GWAS) are now routinely
performed with SNP chips containing 600.000 SNPs.

o Sequence similarity searches (e.g. BLAST a sequence against
all known proteins) amount to compare a query sequences to
billions of database entries.

]
000

29
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Multiple testing correction : Bonferroni's rule

= A first approach to correct for multiple tests is to

apply Bonferroni's rule o < 1
o Adapt the p-value threshold ("alpha risk") to - N
the number of simultaneous tests.
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Multiple testing correction : from P-value to E-value

» If p=P(X >0)=0.0117 and the database contains
N=200,000 entries, we expect to obtain N*p = 2340
false positives !

= We are in a situation of multi-testing : each
analysis amounts to test N hypotheses.

= The E-value (expected value) allows to take this
effect into account :

o Eval =Pval * N

o Instead of setting a threshold on the P-value,
we should set a threshold on the E-value.

o If we want to avoid false positive, this
threshold should always be smaller than 1.

® Threshold(Eval) <1

= The fact to set a threshold < I on the E-value is
equivalent to Bonferroni's correction, which
consists in adapting the threshold on the p-value.

® Threshold(Pval) < 1/N

31

Eval = N - Pval




Multiple testing correction : Family-wise Error Rate (FWER)

= Another correction for multiple testing consists in
estimating the Family-Wise Error Rate (FWER).

= The FWER is the probability to observe at least
one false positive in the whole set of tests. This

probability can be calculated quite easily from the
P-value (Pval).

32

FWER =1-(1- Pval)”




False Discovery Rate (FDR)

" threshold on Povalue, the Falss Discovery Rate FDR = FP/(FP+TP)
(FDR), i.e. the proportion of false predictions
within a set of tests declared significant.

o FP  number of false positives
o TP number of true positives
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Summary - Multi-testing corrections

Bonferroni rule adapt significance threshold

Eval = N - Pval

FWER =1-(1- Pval)”

FDR = FP/(FP+TP)

E-value

FWER

FDR

expected number of false positives

Family-wise error rate:
probability to observe
at least one false positive

False discovery rate:
estimated rate of false positives
among the predictions

2



Statistics for bioinformatics

The “q-value”

(Storey and Tibshirani, 2003)




How can we estimate the m,/ m, proportions ?

= TOBE COMPLETED
= See the practical about multiple testing correction on the supporting Web site.
o http://pedagogix-tagc.univ-mrs.fr/courses/statistics_bioinformatics/

Fig 1 from Storey and Tibshirani, 2003) Application to another study case Negative control: permuted data from
(ALL versus AML expression from Goub et Golub et al. (1999)
al., 1999)

— Golub ; p-value distribution

Study case from Storey and Tibshirani Permuted data ; p-value distribution
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Fig. 1. A density histogram of the 3,170 p values from the Hedenfalk et al. pal

(14) data. The dashed line is the density histogram we would expect if all genes pval

were null (not differentially expressed). The dotted line is at the height of our
estimate of the proportion of null p values.

= Storey and Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci USA (2003) vol. 100 (16) pp. 9440-5. 36
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= Data sets

= Distance and similarity metrics
= K-means clustering

= Hierarchical clustering

= Evaluation of clustering results




Introduction to clustering

» Clustering is an unsupervised approach

o Class discovery: starting from a set of objects, group them into classes, without any prior
knowledge of these classes.

= There are many clustering methods
o hierarchical
o k-means
o self-organizing maps (SOM)
o knn

a

= The results vary drastically depending on
o clustering method
o similarity or dissimilarity metric
o additional parameters specific to each clustering method (e.g. number of centres for the k-mean,
agglomeration rule for hierarchical clustering, ...)






Diauxic shift

3.3

2 Branerung ebranchi
= DeRisi et al published the first article describing a e m‘ 1 Sy °g'§':-= 'A—G"’“"e"‘i@g
full-genome monitoring of gene expression data. GLu.s.p -1

This article reported an experiment called
“diauxic shift” with with 7 time points.

Initially, cells are grown in a glucose-rich medium.
As time progresses, cells
o Consume glucose -> when glucose becomes
limiting
® Glycolysis stops
® Gluconeogenesis is activated to produce
glucose

o Produce by-products -> the culture medium
becomes polluted/

® Stress response

Glyoxylate
Cycle
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Proteins
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= DeRisi et al. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science (1997) vol. 278 (5338) pp. 680-6



Cell cycle data

%y, Alpha _cdclS _cdc28 Elu

Spellman et al. (1998)

Time profiles of yeast cells followed during cell M/G1

cycle.

Several experiments were regrouped, with

various ways of synchronization (elutriation, cdc

mutants, ...)

~800 genes showing a periodic patterns of

expression were selected (by Fourier analysis) Gl
S
(2
M

Figure 1.

= Spellman et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol



Gene expression data — response to environmental changes

= Gasch et al. (2000), 173 chips (stress response,
heat shock, drugs, carbon source, ...)

V) :_.\\’
&
I
>8X >8X

repressed  induced

= Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57.



Gene expression data - carbon sources

= Gasch et al. (2000), 173 chips (stress response, heat shock, drugs, carbon source, ...)
=  We selected the 13 chips with the response to different carbon sources.
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= Gasch et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell (2000) vol. 11 (12) pp. 4241-57.



Data standardization and filtering

= For the cell cycle experiments, genes had already been filtered in the original publication.
We used the 800 selected genes for the analysis.

= For the diauxic shift and carbon source experiments, each chip contain >6000 genes, most
of which are un-regulated.
= Standardization
o We applied a chip-wise standardization (centring and scaling) with robust estimates (median and
IQR) on each chip.
= Filtering
o Z-scores obtained after standardization were converted
® to P-value (normal distribution)
® to E-value (=P-value*N)
o Only genes with an E-value < 1 were retained for clustering.



Filtering of carbon source data
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Hierarchical clustering



Hierarchical clustering of expression profiles

= In 1998, Eisen et al.

o Implemented a software tool called Cluster,
which combine hierarchical clustering and
heatmap visualization.

o Applied it to extract clusters of co-expressed

genes from various types of expression
profiles.

= Eisen et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A (1998)
vol. 95 (25) pp. 14863-8
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Clustering with gene expression data

Gene expression Chip-wise 1
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Hierarchical clustering on gene expression data

Gene expression Chip-wise ]
. Nt Z-scores
profiles standardization J
<
Threshold Profiles of
filtering ) regulated genes
Pairwise distance] Distance
calculation J matrix

YALO66W
YAR008W
YARO71W
YBLOOSW
YBLO15W
YBL043W
YBR018C

YBR019C

YBR020W
YBR054W

YALO66W YARO008W YARO71W YBLOO5SW YBLO15W YBL043W YBR018C YBR019C YBR020W YBRO054W

0.00 6.82 12.99 16.33 11.64 17.39 36.41 32.52 36.07 12.00
6.82 0.00 11.70 13.69 12.58 18.18 37.51 33.46 37.18 12.36
12.99 11.70 0.00 13.32 21.77 26.62 42.48 38.48 42.15 21.09
16.33 13.69 13.32 0.00 19.52 25.04 44.95 41.16 44.62 17.86
11.64 12.58 21.77 19.52 0.00 8.51 3447 30.79 33.77 6.46

17.39 18.18 26.62 25.04 8.51 0.00 31.74 28.64 30.90 11.13
36.41 37.51 4248 44.95 3447 31.74 0.00 5.12 4.66 35.84
32.52 33.46 38.48 41.16 30.79 28.64 5.12 0.00 4.81 32.58
36.07 37.18 42.15 44.62 33.77 30.90 4.66 4.81 0.00 35.63
12.00 12.36 21.09 17.86 6.46 11.13 35.84 32.58 35.63 0.00




Hierarchical clustering on gene expression data

~

Threshold Profiles of
filtering ) regulated genes

Gene expression Chip-wise ] ~
. L -scores
profiles standardization J

Hierarchical clustering

Pairwise distance] Distance
calculation J matrix

t
)

[ Tree building J Tree




Principle of tree building

Distance matrix

- N (32) < Te]
© © © © ©
() o o (V] (<
9 © o o o
©O ©o ©o o ©
object 1 0.00 4.00 6.00 3.50 1.00
object 2 4.00 0.00 6.00 2.00 4.50
object 3 6.00 6.00 0.00 5.50 6.50
object 4 3.50 2.00 5.50 0.00 4.00
object 5 1.00 4.50 6.50 4.00 0.00
Tree representation
branch . object 1
node\ 41[
3 object 5
object 4
4
’ object 2
root object 3
leaf
nodes

Hierarchical clustering is an aggregative clustering
method

o takes as input a distance matrix

o progressively regroups the closest objects/groups
One needs to define a (dis)similarity metric between
two groups. There are several possibilities

o Average linkage: the average distance between
objects from groups A and B

o Single linkage: the distance between the closest
objects from groups A and B

o Complete linkage: the distance between the most
distant objects from groups A and B

Algorithm
o (1) Assign each object to a separate cluster.

o (2) Find the pair of clusters with the shortest distance,
and regroup them in a single cluster

o (3) Repeat (2) until there is a single cluster
The result is a tree, whose intermediate nodes
represent clusters

o N objects — N-1 intermediate nodes

Branch lengths represent distances between
clusters



Isomorphism on a tree

branch . |: leaf 1

nOde\ leaf 5
—c3

o L

’ ¢ leaf 2

root leaf 3

branch . |: leaf 5

nOde\ leaf 1
—c3

’ ¢ leaf 4

root leaf 3

In a tree, the two children of any
branch node can be swapped. The
result is an isomorphic tree,
considered as equivalent to the intial
one.

The two trees shown here are
equivalent, however

o Top tree: leaf 1 is far away from
leaf 2

o Bottom tree: leaf 1 is neighbour
from leaf 2

The vertical distance between two
nodes does NOT reflect their actual
distance !

The distance between two nodes is
the sum of branch lengths.



Hierarchical clustering on gene expression data

Gene expression Chip-wise ] ~
. L -scores
profiles standardization J

<
Threshold Profiles of
filtering ) regulated genes
Pairwise dlstance] Distance
calculation J matrix
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Hlerarchlcal ]
Tree
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Impact of the agglomeration rule

= The choice of the agglomeration rule has a strong impact on the structure of a tree
resulting from hierarchical clustering.

= Those four trees
were built from the
same distance
matrix, using 4
different
agglomeration rules.

= The clustering order
is completely
different.

= Single-linkage
typically creates
nesting clusters
(“Matryoshka dolls”).

= Complete and Ward
1 linkage create more
balanced trees.

= Note: the matrix was
computed from a
matrix of random
numbers. The
subjective impression
of structure are thus
complete artifacts.

Random data - Single lignage Random data - Average lignage

55

Height
4.0
Height
5
1

3.5

30

hclust (%, "single”) heclust (*, "average”)

Random data - Complete lignage Random data - Ward lignage
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Height
Height
8

6
|

hclust (*, "complete”) hclust (*, "ward")




Golub 1999 - Impact of the linkage method (Euclidian distance for all the trees)

nclust (7, "wara")



Golub 1999 - Effect of the distance metrics (complete linkage for all the trees)




)
S
-
O
)
7p)
S
—
G
o
c
%
O
|
»
S
S
~
o
=
—
O
O

Gene clustering highlights groups
of genes with similar expression

profiles.

367 probes)

Golub, gene clusters (38 samples

TNV BEX
INYLEX
INY9EX
INYSEX
TNV HEX
TNV EEX
TNV 2EX
TNV LEX
INY0EX
INY 62X
INY 82X
TV 22X
TV 92X
TV Gex
1V eX
TV €2X
TV 22X
TV X
TV 02X
TV 6iX
TV 81X
TV LIX
TV 9LX
TV SX
TV PIX
TV kX
TV 2ix
TV X
TV 0LX
TV 6X

TV 8X

TV X

TV X

TV SX

TV X

TV EX

TV 2X

TV IX



Golub 1999 - Ward Biclustering - Euclidian distance

golub; eu distance ward

Biclustering consists in
clustering the rows (genes) and
the columns (samples) of the
data set.

This reveals some subgroups
of samples.

With the golub 1999 data set
o The AML and ALL patients are
clearly separated at the top
level of the tree
o There are apparently two

clusters among the AML
samples.



Golub 1999 - Ward Biclustering - Dot product distance

golub; dp distance ward

X29_AML
X32_AML
X34_AML
X38_AML
X35_AML
X30_AML
X31_AML
X33_AML
X37_AML
X28_AML
X36_AML
X2_ALL
X14_ALL
ALL
X3_ALL
X9_ALL
X11_ALL
X6_ALL
ALL
X17_ALL
X18_ALL
X21_ALL
X5_ALL
X24_ALL
X20_ALL
X13_ALL
X15_ALL
X16_ALL
ALL
X1_ALL
ALL
X27_ALL
X12_ALL
X25_ALL
X4_ALL
X7_ALL
X8_ALL
X22_ALL

X10
X23
X19
X26

Biclustering consists in clustering
the rows (genes) and the columns
(samples) of the data set.

This reveals some subgroups of
samples.

With the golub 1999 data set

o The AML and ALL patients are

clearly separated at the top level
of the tree

o There are apparently two clusters
among the ALL samples. Actually
these two clusters correspond to
distinct cell subtypes: T and B
cells, respectively.



Impact of distance metrics and agglomeration rules

Complete Ward

olub; eu distance complete olub; eu distance ward

Single

golub; eu distance single

Average

olub; eu distance average

Euclidian

golub; cor distance single olub; cor distance average olub; cor distance complete

Correlation

golub; dp distance single olub; dp distance average olub; dp distance complete olub; dp distance ward

Dot product

FEEEEEEE!
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Golub 1999 - Pruning the tree

Height

Height
o 100
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golub ; Euclidian distance; Ward linkage
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Carbon sources ; z-score > 4.8 ; complete linkage ; Euclidian distance
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Pruning and cutting the tree

Height

Height

= The tree can be cut at level k (starting from the root), which creates k clusters

= A k-group partitioning is obtained by collecting the leaves below each branch of the pruned
tree

Cluster Dendrogram

hclust (*, "complete”)

pruned tree, k=7

20

0 5 10

hclust (*, "complete”)



Den Boer 2009 — Hierarchical clustering
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K-means clustering




Clustering around mobile centres

= The number of centres (k) has to be specified a priori

= Algorithm
o (1) Arbitrarily select k initial centres
o (2) Assign each element to the closest centre
o (3) Re-calculate centres (mean position of the assigned elements)

o (4) Repeat (2) and (3) until one of the stopping conditions is reached
® the clusters are the same as in the previous iteration
¢ the difference between two iterations is smaller than a specified threshold
® the max number of iterations has been reached



Mobile centres example - initial conditions

s [wo sets of random

points are randomly
initial conditions generated

o 200 points centred on
(0,0)
o 50 points centred on (1,1)
= [wo points are
randomly chosen as
= seeds (blue dots)




Mobile centres example - first iteration

iter.max =1 ; iterations = 1 = Step 1
o o Each dot is assigned
o . to the cluster with the
., " * closest centre
‘ ’ 2 Centres are re-
° R calculated (blue star)
. o . ° on the basis of the
* new clusters
® e ° e ..' . .
° ° ° o ..:. . ‘° o ® ¢
g | "}"‘*.... . °
o ¢ g %o o 0.. ° ¢
° g $ ° ’ P

-1.0 -0.5 0.0 0.5 1.0 1.5



Mobile centres example - second iteration

iter.max = 2 ; iterations = 2

1.5

= At each step,

o points are re-assigned
to clusters

o centres are re-
calculated
s Cluster boundaries and
centre positions evolve
at each iteration



Mobile centres example - after 3 iterations

iter.-max = 3 ; iterations = 3
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= At each step,

o points are re-assigned
to clusters

o centres are re-
calculated
s Cluster boundaries and
centre positions evolve
at each iteration



Mobile centres example - after 4 iterations

iter.max = 4 ; iterations = 4
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= At each step,

o points are re-assigned
to clusters

o centres are re-
calculated
s Cluster boundaries and
centre positions evolve
at each iteration



Mobile centres example - after 5 iterations

iter.-max =5 ; iterations = 5
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= At each step,

o points are re-assigned
to clusters

o centres are re-
calculated
s Cluster boundaries and
centre positions evolve
at each iteration



Mobile centres example - after 6 iterations

iter.-max = 6 ; iterations = 6
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= At each step,

o points are re-assigned
to clusters

o centres are re-
calculated
s Cluster boundaries and
centre positions evolve
at each iteration



Mobile centres example - after 10 iterations

iter.-max = 10 ; iterations = 6
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After some iterations (6
in this case), the
clusters and centres do
not change anymore



Mobile centres example - random data
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K-means clustering

= K-means clustering is a variant of clustering around mobile centres
= After each assignation of an element to a centre, the position of this centre is re-calculated
= The convergence is much faster than with the basic mobile centre algorithm
o after 1 iteration, the result might already be stable
= K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects)



Clustering with gene expression data

m»  Clustering can be performed in two ways
o Taking genes as objects and conditions/cell types as variables
o Taking conditions/cell types as objects and genes as variables
= Problem of dimensionality
o When genes are considered as variables, there are many more variables than objects
Generally, only a very small fraction of the genes are regulated (e.g. 30 genes among 6,000)
o However, all genes will contribute equally to the distance metrics
o The noise will thus affect the calculated distances between conditions
= Solution
o Selection of a subset of strongly regulated genes before applying clustering to conditions/cell types

O



K-means clustering

= K-means clustering is a variant of clustering around mobile centres
= After each assignation of an element to a centre, the position of this centre is re-calculated
= The convergence is much faster than with the basic mobile centre algorithm
o after 1 iteration, the result might already be stable
= K-means is time- and memory-efficient for very large data sets (e.g. thousands of objects)



Diauxic shift: k-means clustering on all genes
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Diauxic shift: k-means clustering on filtered genes
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Diauxic shift: k-means clustering on permuted filtered genes
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Cell cycle data: K-means clustering

ot '1'(575'el')"":

value

value

value
value

value

value
value

value

|
\
=

112§ 16 ef) !

value

value
value




Cell cycle data: K-means clustering, permuted data
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Carbon sources: K-means clustering

value sucrosae.vs.ret.pool

value

-10

-15

-10

-15

-10

-15

T S SRR IS ..l.....
-10 -5 0 5
LelAge)
AN N
U
Vo VL
...l': ...... E ...... é“"“é“|.’{ .............
VR

value

value

value

-15

-10 -5

=15

v
- 14
1

value

elsgsed iooio i

value

-10

-15

value

value

value

-10 -5

-15

ol 11( 34 &)

Nawl L fenigraderenens teees




Golub - K-means clustering

X3B_AML




K-means clustering - summary

= Strengths

o Simple to use

o Fast

o Can be used with very large data sets
=  Weaknesses

o The choice of the number of groups is arbitrary

o The results vary depending on the initial positions of centres

o The R implementation is based on Euclidian distance, no other metrics are proposed
= Solutions

o Try different values for k and compare the result

o For each value of k, run repeatedly to sample different initial conditions
=  Weakness of the solution

o Instead of one clustering, you obtain hundreds of different clustering results, totaling thousands of
clusters, how to decide among them



Statistical Analysis of Microarray Data

Evaluation of

clustering results



How to evaluate the result ?

It is very hard to make a choice between the multiple possibilities of
distance metrics, clustering algorithms and parameters.

Several criteria can be used to evaluate the clustering results

o Consensus: using different methods, comparing the results and extracting a
consensus

o Robustness: running the same algorithm multiple times, with different initial
conditions
® Bootstrap
¢ Jack-knife
* Test different initial positions for the k-means
o Biological relevance: compare the clustering result to functional
annotations (functional catalogs, metabolic pathways, ...)



Comparing two clustering results

= If two methods return partitions
of the same size, their clusters
can be compared in a confusion
table

= Optimal correspondences
between clusters can be
established (permuting columns
to maximize the diagonal)

= [he consistency between the
two classifications can then be
estimated with the hit rate

= Example :

o Carbon source data, comparison of k-
means and hierarchical clustering

= k-means clustering
s k1 k2 k3 k4 k5 k6 k7 | Sum
2 [ |. 0 0 2 18 14 _1 0 35
3 |2 e T T e ol | 4
s [ha7]7T0TT0Te o 0 e 0| o
2 [haTE0T0 e o 0 e | 59
RN (I N O | T
A 1Y N LA O A | I I
= h7 0: 2: 0: 0: 0: ©0: 0 2
Sum] 42 14 12 22 24 15 4] 133
= k-means clustering
s k4 k3 k5 k1 k2 k7 k6 |JSum
o b |82 140 00000 35
o [hZ | . 400 00 0E 08 0oL 4
p A (L0 N AN ) ) I
r=S 11 S - 0. 10: 05 40¢ 0f 0L..91 99
S fhS | . 0:..0i .0i 2 120 0: 5 19
s 6. 0:..0:..0:i .0 . 0i 4.0 4
< h7 0 0: 0: 0i 28 0i O 2
Sum| 22 12 24 42 14 4 15| 133

Correspondence between clusters

hierarchical h1 h2 h3 h4 h5 h6 h7
k-means kd k3 k5 k1 k2 k7 k6
Matches 84 Hit rate 63.2%
Mismatches 49 Error rate 36.8%



Evaluation of robustness - Bootstrap

= The bootstrap consists in repeating r times (for
example r=100) the clustering, using each time
o Either a different subset of variables
o Or a different subset of objects

= The subset of variables is selected randomly, with

resampling (i.e. the same variable can be present
several times, whilst other variables are absent.

= On the images the tree is colored according to
the reproducibility of the branches during a 100-
iterations bootstrap.
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