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ChIP-seq analysis
M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier

● Data visualization, quality control, normalization & peak calling
 Presentation (Carl Herrmann)
 Practical session

● Peak annotation
 Presentation (Matthieu Defrance)
 Practical session

● From peaks to motifs
 Presentation (Jacques van Helden)
 Practical session

Reads Peaks Annotations Motifs
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Datasets used

● estrogen-receptor (ESR1) is a key factor in breast cancer 
developement

● goal of the study: understand the dependency of ESR1 binding on 
presence of co-factors, in particular GATA3, which is mutated in 
breast cancers

● approaches: GATA3 silencing (siRNA), ChIP-seq on ESR1 in wt vs. 
siGATA3 conditions, chromatin profiling
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Datasets used

● ESR1 ChIP-seq in WT & siGATA3 
conditions
( 3 replicates = 6 datasets)

● H3K4me1 in WT & siGATA3 
conditions
(1 replicate = 2 datasets)

● Input dataset in MCF-7
(1 replicate = 1 dataset)

● p300 before estrogen stimulation
● GATA3/FOXA1 ChIP-seq 

before/after estrogen stimulation
● microarray expression data, etc ...
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Hands on !!

Let's have a look at the data
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What we want to do
do we have

more signal here ...

… than here ?
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Keys aspects of ChIP-seq analysis

(1) Quality Control : do I have signal ?
(2) Determine signal coverage
(3) Modelling noise levels
(4) Scaling/normalizing datasets
(5) Detecting enriched peak regions
(6) Performing differential analysis
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0. Principle of ChIP-seq

[Wilbanks & Faccioti PLoS One (2010)]

We expect to see a typical strand asymetry in read densities 
 ChIP peak recognition pattern →

The binding site itself is
generally not sequenced !
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0. Principle of ChIP-seq

[Wilbanks & Faccioti PLoS One (2010)]

Strand asymetry is blurred when multiple proteins bind
or in case of histone modifications ChIP
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Principle of ChIP-seq

treatment read density (=WIG/bigWig)

aligned reads + strand (=BAM)

aligned reads - strand (=BAM)

peak (=BED)

input read density (=WIG/bigWig)
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1. Quality control
● Qualitative

 Look at your favorite gene/locus in 
IGV !

 Heatmap of signal
 e.g. H3K4me3 at promoters→
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1. Quality control
● Quantitative

 Fraction of reads in peaks (FRiP)

 

 depends on type of ChIP (TF/histone)→

  PCR Bottleneck coefficient (PBC) : 
measure of library complexity

https://www.encodeproject.org/data-standards/2012-quality-metrics/

PBC=
N 1

N d

Genomic positions
with 1 read aligned

Genomic positions
with ≥ 1 read aligned

PBC < 0.5
0.5 < PBC < 0.8
0.8 < PBC

FRiP=
reads∈peaks
total reads
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2. from reads to coverage
● to visualize the data, we use coverage plots (=density of 

fragments per genomic region)
● need to reduce BAM file to more compact format 

 → bigWig/bedGraph
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2. from reads to coverage

● Reads are extended to 3' to 
fragment length

SD=
nmapped reads×L

Geff

RPKM=
nreads /bin×W bin

nmapped reads

● Read counts are computed for 
each bin

 → deepTools : bamCoverage

● Counts are normalized
 reads per genomic content

 normalize to 1x coverage→

 reads per kilobase per million 
reads per bin
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2. from reads to coverage

H3K4me1

H3K4me1
reads

ESR1
reads

ESR1
input
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3. signal and noise

MCF7 genome

hg19 reference genome
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3. signal to noise

● Mappability issue : alignability track shows, how many times a read from a 
given position of the genome would align
 a=1  read from this position ONLY aligns to this position→
 a=1/n  read from this position could align to n locations→

 → we usually only keep uniquely aligned reads : positions with a < 1 have no 
reads left

treatment

input

k=35
k=50
k=100
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3. signal to noise

The availability of a control sample in
mandatory !

 → mock IP with unspecific antibody
 → sequencing of input (=naked) DNA
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4. modelling background level

● naïve subtraction treatment – input is not possible, because 
both libraries have different sequencing depth !

● Solution 1 : before subtraction, scale both libraries by total 
number of reads (library size)
 RPGC 
 RPKM SD=

nmapped reads×L

Geff

RPKM=
nreads /bin×W bin

nmapped reads

How to get a noise free track ?
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4. modelling background level

Treatment
N= 10 M reads

Input
N'= 12 M reads

Problem : signal influences scaling factor
More signal (but equal noise)  artificial noise over-estimation→

scale smaler dataset
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4. modelling background level

input
1

10

area ~ number of reads = 10

treatment
1

10

area ~ number of reads = 10 + 4 + 4 = 18

5

Scaling by library size : upscale input by 18/10 = 1.8

treatment

1

10

5 estimated noise level

Noise level is over-estimated !
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4. modelling background level

input
1

10

area ~ number of reads = 10

treatment
1

10

area ~ number of reads = 10 + 9 + 4 = 23

5

Scaling by library size : upscale input by 23/10 = 2.3

treatment

1

10

5 estimated noise level
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4. modelling background level

input
1

10

area ~ number of reads = 10

treatment
1

10

area ~ number of reads = 10 + 9 + 4 = 23

5

Scaling by library size : upscale input by 23/10 = 2.3

treatment

1

10

5 estimated noise level
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4. modelling background level
● more advanced : linear regression by exclusing peak regions 

(PeakSeq) 
● read counts in 1Mb regions in input and treatment

all regions excluding enriched (=signal) regions
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4. modelling background level

● Alternative strategy 
(deepTools  Diaz et al.)→

1. bin genome into n 10 kb windows
2. count reads in each window for input 

(Xi) and treatment (Yi)

3. total number of reads is NX and NY

4.  order Yi from less to most enriched  →
Y(i) 

5. define and plot

 pj = proportion of reads in the j less 
enriched windows

p j=∑i =1

j
Y

(i )/MY ; q j=∑i =1

j
X

( i )/M X

90% of the genome
contain ~ 25% of reads

25% of the genome
contains no reads !
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4. modelling background level

this is were pj and qj
differ most

both datasets contain 
only noise in this range treatment dataset

contains signal  → scale according to number of reads in this range
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5. from reads to peaks

● Tag shifting vs. extension
 positive/negative strand read 

peaks do not represent the 
true location of the binding site

 fragment length is d and can 
be estimated from strand 
asymmetry

 reads can be elongated to 
a size of d 

 reads can be shifted by d/2 
 increased resolution→

example of MACS model building
using top enriched regions
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d

5. from reads to peaks

“Read shifting”
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5. from reads to peaks

d“Read extension”
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Some methods separate the tag densities
into different strands and take advantage
of tag asymmetry

Most consider merged densities and
look for enrichment
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Tag shift

Tag extension

Tags unchanged
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5. from reads to peaks
● Determining “enriched” regions

 sliding window across the genome
 at each location, evaluate the enrichement of the signal wrt. expected 

background based on the distribution
 retain regions with P-values below threshold
 evaluate FDR

Pval < 1e-20 Pval ~ 0.6
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6. MACS  [Zhang et al. Genome Biol. 2008]

● Step 1 : estimating fragment length d
 slide a window of size BANDWIDTH
 retain top regions with MFOLD enrichment of treatment vs. input
 plot average +/- strand read densities  estimate d→

enrichment
> MFOLD

treatment

control
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5. MACS [Zhang et al. Genome Biol. 2008]

● Step 2 : identification of local noise parameter
 slide a window of size 2*d across treatment and input
 estimate parameter λ

local
 of Poisson distribution

1 kb

10 kb

5 kb

full genome

estimate λ over diff. ranges
 → take the max
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● Step 3 : identification of enriched/peak regions 
 determine regions with P-values < PVALUE
 determine summit position inside enriched regions as max density

P-val = 1e-30

5. MACS [Zhang et al. Genome Biol. 2008]



Carl Herrmann      –  Ecole Aviesan Roscoff 2015

● Step 4 : estimating FDR
 positive peaks (P-values)
 swap treatment and input; call negative peaks (P-value)

FDR(p) =   
# negative peaks with Pval < p 

# positive peaks with Pval < p
increasing P-value

FDR = 2/25=0.08

5. MACS [Zhang et al. Genome Biol. 2008]
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6. differential analysis
● given ChIP-set datasets in different conditions, we want to find 

differential binding events between 2 conditions
 binding vs. no binding  qualitative analysis→
 weak binding vs. strong binding  quantitative analysis→

Condition A

Condition B

stronger 
binding 

in A

stronger 
binding 

in B
no differencebinding in A

no binding in B
binding in B

no binding in A
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6. differential analysis
● simple approach  compute common and specific peaks→

Condition A Condition B

Drawback : 
- common peaks can hide differences in binding intensities
- specific peaks can result from threshold issues
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6. differential analysis

● quantitative approach
 select regions which have signal (union of all peaks)
 in these regions, perform quantitative analysis of differential binding 

based on read counts

● statistical model
 without replicates : assume simple Poisson model (  SICER-df)→
 with replicates : perform differential test using DE tools from RNA-

seq (diffBind using EdgeR, DESeq,...) based on read counts
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6. differential analysis

● without replicates (sicer-df)
 consider one condition to be the reference (condition A)
 call peaks on each condition independently
 take union of peaks
 assume Poisson model based on 

expected number of reads in region 
 compute P-value, log(fold-change) 

λ i=wi N A /Leff

λ2λ1 λ3
λ4 λ5

n1 n2 n3 n4 n5
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6. differential analysis
● with replicates (diffBind)

 provide list of peaks for replicates A and replicates B
 determine consensus peakset based on presence in at least n 

datasets
 compute read counts in each consensus peak in each dataset
 run DESeq / EdgeR to determine differential peaks between condition 

A and B (negative binomial model, variance estimated on replicates)

peaks A

peaks B

consensus peaks (if n ≥2)
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6. differential analysis

Considerable differences in peak numbers and sizes !
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Program of the Practical Session

Step 0 : Find datasets on Gene Expression Omnibus
Step 1 : Import datasets into your Galaxy history
Step 2 : data inspection : coverage plots, correlation,...
Step 3 : peak calling using MACS
Step 5 : differential analysis
Step 6 : visualizing results in IGV
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